Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

155 lines
5.3 KiB

import argparse
import os
import warnings
from typing import Any, Callable, Dict, List, Tuple, Type, Union
import torch
import torch.distributed.rpc as rpc
import torch.multiprocessing as mp
from torch._C._distributed_rpc import _is_current_rpc_agent_set
from torch.futures import Future
from colossalai.initialize import launch
from colossalai.pipeline.pipeline_process_group import ppg
def pyobj_map(obj: Any, fn: Callable, process_types: Union[Type, Tuple[Type]] = ()) -> Any:
if isinstance(obj, process_types):
return fn(obj)
elif type(obj) is dict:
return {k: pyobj_map(obj[k], fn, process_types) for k in obj}
elif type(obj) is tuple:
return tuple(pyobj_map(o, fn, process_types) for o in obj)
elif type(obj) is list:
return list(pyobj_map(o, fn, process_types) for o in obj)
else:
return obj
def pytree_map(obj: Any, fn: Callable, process_types: Union[Type, Tuple[Type]] = (), map_all: bool = False) -> Any:
"""process object recursively, like pytree
Args:
obj (:class:`Any`): object to process
fn (:class:`Callable`): a function to process subobject in obj
process_types (:class: `type | tuple[type]`): types to determine the type to process
map_all (:class: `bool`): if map_all is True, then any type of element will use fn
Returns:
:class:`Any`: returns have the same structure of `obj` and type in process_types after map of `fn`
"""
if isinstance(obj, dict):
return {k: pytree_map(obj[k], fn, process_types, map_all) for k in obj}
elif isinstance(obj, tuple):
return tuple(pytree_map(o, fn, process_types, map_all) for o in obj)
elif isinstance(obj, list):
return list(pytree_map(o, fn, process_types, map_all) for o in obj)
elif isinstance(obj, process_types):
return fn(obj)
else:
return fn(obj) if map_all else obj
def tensor_shape_list(obj):
return pytree_map(obj, fn=lambda x: x.shape, process_types=torch.Tensor)
def get_batch_lengths(batch):
lengths = []
pytree_map(batch, fn=lambda x: lengths.append(len(x)), process_types=torch.Tensor)
return lengths
def split_batch(batch: Any, start, stop, device: str):
if device == 'cuda':
fn = lambda x: x[start:stop].cuda()
else:
fn = lambda x: x[start:stop]
return pytree_map(batch, fn=fn, process_types=torch.Tensor)
def type_detail(obj):
return pytree_map(obj, lambda x: type(x), map_all=True)
def pytree_filter(fn, obj, process_types):
if obj is None:
return None
filters = []
def condition_append(obj):
if fn(obj):
filters.append(obj)
pytree_map(obj, fn=condition_append, process_types=process_types)
return filters
def get_real_args_kwargs(args_or_kwargs):
args_or_kwargs = pytree_map(args_or_kwargs, fn=lambda x: x.wait(), process_types=Future)
# TODO : combine producer and consumer
# by default, merge all args in the output args or kwargs
if args_or_kwargs is not None:
if isinstance(args_or_kwargs, dict):
pass
else:
flatten_args = []
pytree_map(args_or_kwargs, fn=lambda x: flatten_args.append(x), map_all=True)
args_or_kwargs = flatten_args
return args_or_kwargs
def run_worker(rank, args, master_func):
os.environ['MASTER_ADDR'] = args.master_addr
os.environ['MASTER_PORT'] = args.master_port
device = args.device
world_size = args.world_size
dp_degree = args.dp_degree
tp_degree = args.tp_degree
num_worker_threads = args.num_worker_threads
host = args.master_addr
port = args.master_port
backend = 'nccl' if device == 'cuda' else 'gloo'
launch(dict(), rank, world_size, host, int(port), backend, verbose=False)
ppg.set_global_info(rank=rank,
world_size=world_size,
dp_degree=dp_degree,
tp_degree=tp_degree,
num_worker_threads=num_worker_threads,
device=device)
ppg.args = args
# in rpc mode, only rank 0 is needed to be coded
if rank == 0:
master_func(args)
# barrier here
if _is_current_rpc_agent_set():
rpc.shutdown()
else:
warnings.warn("RPC has not been initialized")
def rpc_run(args, master_func):
world_size = args.world_size
mp.spawn(run_worker, args=(args, master_func), nprocs=world_size)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--epoch', type=int, default=1)
parser.add_argument('--world_size', type=int, default=2)
parser.add_argument('--batch_size', type=int, default=16)
parser.add_argument('--dp_degree', type=int, default=1)
parser.add_argument('--tp_degree', type=int, default=1)
parser.add_argument('--num_microbatches', type=int, default=2)
parser.add_argument('--chunk', type=int, default=1)
parser.add_argument('--use_checkpoint', action='store_true')
parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'RMSprop'], default='SGD')
parser.add_argument('--device', type=str, choices=['cpu', 'cuda'], default='cuda')
parser.add_argument('--master_addr', type=str, default='localhost')
parser.add_argument('--master_port', type=str, default='29020')
parser.add_argument('--num_worker_threads', type=int, default=128)
return parser.parse_args()