mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
525 lines
19 KiB
525 lines
19 KiB
""" |
|
Fused Attention |
|
=============== |
|
This is a Triton implementation of the Flash Attention algorithm |
|
(see: Dao et al., https://arxiv.org/pdf/2205.14135v2.pdf; Rabe and Staats https://arxiv.org/pdf/2112.05682v2.pdf; Triton https://github.com/openai/triton) |
|
""" |
|
|
|
import math |
|
import os |
|
import subprocess |
|
|
|
import torch |
|
|
|
|
|
def triton_cuda_check(): |
|
cuda_home = os.getenv("CUDA_HOME", default="/usr/local/cuda") |
|
cuda_version = subprocess.check_output([os.path.join(cuda_home, "bin/nvcc"), "--version"]).decode().strip() |
|
cuda_version = cuda_version.split('release ')[1] |
|
cuda_version = cuda_version.split(',')[0] |
|
cuda_version = cuda_version.split('.') |
|
if len(cuda_version) == 2 and \ |
|
(int(cuda_version[0]) == 11 and int(cuda_version[1]) >= 4) or \ |
|
int(cuda_version[0]) > 11: |
|
return True |
|
return False |
|
|
|
|
|
try: |
|
import triton |
|
import triton.language as tl |
|
if triton_cuda_check(): |
|
HAS_TRITON = True |
|
else: |
|
print("triton requires cuda >= 11.4") |
|
HAS_TRITON = False |
|
except ImportError: |
|
print('please install triton from https://github.com/openai/triton') |
|
HAS_TRITON = False |
|
try: |
|
from flash_attn.flash_attention import FlashAttention |
|
from flash_attn.flash_attn_interface import ( |
|
flash_attn_unpadded_func, |
|
flash_attn_unpadded_kvpacked_func, |
|
flash_attn_unpadded_qkvpacked_func, |
|
) |
|
HAS_FLASH_ATTN = True |
|
except ImportError: |
|
HAS_FLASH_ATTN = False |
|
print('please install flash_attn from https://github.com/HazyResearch/flash-attention') |
|
|
|
try: |
|
from xformers.ops.fmha import memory_efficient_attention |
|
HAS_MEM_EFF_ATTN = True |
|
except ImportError: |
|
HAS_MEM_EFF_ATTN = False |
|
print('please install xformers from https://github.com/facebookresearch/xformers') |
|
|
|
if HAS_TRITON: |
|
|
|
@triton.jit |
|
def _fwd_kernel( |
|
Q, |
|
K, |
|
V, |
|
sm_scale, |
|
TMP, |
|
L, |
|
M, # NOTE: TMP is a scratchpad buffer to workaround a compiler bug |
|
Out, |
|
stride_qz, |
|
stride_qh, |
|
stride_qm, |
|
stride_qk, |
|
stride_kz, |
|
stride_kh, |
|
stride_kn, |
|
stride_kk, |
|
stride_vz, |
|
stride_vh, |
|
stride_vk, |
|
stride_vn, |
|
stride_oz, |
|
stride_oh, |
|
stride_om, |
|
stride_on, |
|
Z, |
|
H, |
|
N_CTX, |
|
BLOCK_M: tl.constexpr, |
|
BLOCK_DMODEL: tl.constexpr, |
|
BLOCK_N: tl.constexpr, |
|
): |
|
start_m = tl.program_id(0) |
|
off_hz = tl.program_id(1) |
|
# initialize offsets |
|
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) |
|
offs_n = tl.arange(0, BLOCK_N) |
|
offs_d = tl.arange(0, BLOCK_DMODEL) |
|
off_q = off_hz * stride_qh + offs_m[:, None] * stride_qm + offs_d[None, :] * stride_qk |
|
off_k = off_hz * stride_qh + offs_n[:, None] * stride_kn + offs_d[None, :] * stride_kk |
|
off_v = off_hz * stride_qh + offs_n[:, None] * stride_qm + offs_d[None, :] * stride_qk |
|
# Initialize pointers to Q, K, V |
|
q_ptrs = Q + off_q |
|
k_ptrs = K + off_k |
|
v_ptrs = V + off_v |
|
# initialize pointer to m and l |
|
t_ptrs = TMP + off_hz * N_CTX + offs_m |
|
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf") |
|
l_i = tl.zeros([BLOCK_M], dtype=tl.float32) |
|
acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32) |
|
# load q: it will stay in SRAM throughout |
|
q = tl.load(q_ptrs) |
|
# loop over k, v and update accumulator |
|
for start_n in range(0, (start_m + 1) * BLOCK_M, BLOCK_N): |
|
start_n = tl.multiple_of(start_n, BLOCK_N) |
|
# -- compute qk ---- |
|
k = tl.load(k_ptrs + start_n * stride_kn) |
|
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) |
|
qk += tl.dot(q, k, trans_b=True) |
|
qk *= sm_scale |
|
qk += tl.where(offs_m[:, None] >= (start_n + offs_n[None, :]), 0, float("-inf")) |
|
# -- compute m_ij, p, l_ij |
|
m_ij = tl.max(qk, 1) |
|
p = tl.exp(qk - m_ij[:, None]) |
|
l_ij = tl.sum(p, 1) |
|
# -- update m_i and l_i |
|
m_i_new = tl.maximum(m_i, m_ij) |
|
alpha = tl.exp(m_i - m_i_new) |
|
beta = tl.exp(m_ij - m_i_new) |
|
l_i_new = alpha * l_i + beta * l_ij |
|
# -- update output accumulator -- |
|
# scale p |
|
p_scale = beta / l_i_new |
|
p = p * p_scale[:, None] |
|
# scale acc |
|
acc_scale = l_i / l_i_new * alpha |
|
tl.store(t_ptrs, acc_scale) |
|
acc_scale = tl.load(t_ptrs) # BUG: have to store and immediately load |
|
acc = acc * acc_scale[:, None] |
|
# update acc |
|
v = tl.load(v_ptrs + start_n * stride_vk) |
|
p = p.to(tl.float16) |
|
acc += tl.dot(p, v) |
|
# update m_i and l_i |
|
l_i = l_i_new |
|
m_i = m_i_new |
|
# rematerialize offsets to save registers |
|
start_m = tl.program_id(0) |
|
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) |
|
# write back l and m |
|
l_ptrs = L + off_hz * N_CTX + offs_m |
|
m_ptrs = M + off_hz * N_CTX + offs_m |
|
tl.store(l_ptrs, l_i) |
|
tl.store(m_ptrs, m_i) |
|
# initialize pointers to output |
|
offs_n = tl.arange(0, BLOCK_DMODEL) |
|
off_o = off_hz * stride_oh + offs_m[:, None] * stride_om + offs_n[None, :] * stride_on |
|
out_ptrs = Out + off_o |
|
tl.store(out_ptrs, acc) |
|
|
|
@triton.jit |
|
def _bwd_preprocess( |
|
Out, |
|
DO, |
|
L, |
|
NewDO, |
|
Delta, |
|
BLOCK_M: tl.constexpr, |
|
D_HEAD: tl.constexpr, |
|
): |
|
off_m = tl.program_id(0) * BLOCK_M + tl.arange(0, BLOCK_M) |
|
off_n = tl.arange(0, D_HEAD) |
|
# load |
|
o = tl.load(Out + off_m[:, None] * D_HEAD + off_n[None, :]).to(tl.float32) |
|
do = tl.load(DO + off_m[:, None] * D_HEAD + off_n[None, :]).to(tl.float32) |
|
denom = tl.load(L + off_m).to(tl.float32) |
|
# compute |
|
do = do / denom[:, None] |
|
delta = tl.sum(o * do, axis=1) |
|
# write-back |
|
tl.store(NewDO + off_m[:, None] * D_HEAD + off_n[None, :], do) |
|
tl.store(Delta + off_m, delta) |
|
|
|
@triton.jit |
|
def _bwd_kernel( |
|
Q, |
|
K, |
|
V, |
|
sm_scale, |
|
Out, |
|
DO, |
|
DQ, |
|
DK, |
|
DV, |
|
L, |
|
M, |
|
D, |
|
stride_qz, |
|
stride_qh, |
|
stride_qm, |
|
stride_qk, |
|
stride_kz, |
|
stride_kh, |
|
stride_kn, |
|
stride_kk, |
|
stride_vz, |
|
stride_vh, |
|
stride_vk, |
|
stride_vn, |
|
Z, |
|
H, |
|
N_CTX, |
|
num_block, |
|
BLOCK_M: tl.constexpr, |
|
BLOCK_DMODEL: tl.constexpr, |
|
BLOCK_N: tl.constexpr, |
|
): |
|
off_hz = tl.program_id(0) |
|
off_z = off_hz // H |
|
off_h = off_hz % H |
|
# offset pointers for batch/head |
|
Q += off_z * stride_qz + off_h * stride_qh |
|
K += off_z * stride_qz + off_h * stride_qh |
|
V += off_z * stride_qz + off_h * stride_qh |
|
DO += off_z * stride_qz + off_h * stride_qh |
|
DQ += off_z * stride_qz + off_h * stride_qh |
|
DK += off_z * stride_qz + off_h * stride_qh |
|
DV += off_z * stride_qz + off_h * stride_qh |
|
for start_n in range(0, num_block): |
|
lo = start_n * BLOCK_M |
|
# initialize row/col offsets |
|
offs_qm = lo + tl.arange(0, BLOCK_M) |
|
offs_n = start_n * BLOCK_M + tl.arange(0, BLOCK_M) |
|
offs_m = tl.arange(0, BLOCK_N) |
|
offs_k = tl.arange(0, BLOCK_DMODEL) |
|
# initialize pointers to value-like data |
|
q_ptrs = Q + (offs_qm[:, None] * stride_qm + offs_k[None, :] * stride_qk) |
|
k_ptrs = K + (offs_n[:, None] * stride_kn + offs_k[None, :] * stride_kk) |
|
v_ptrs = V + (offs_n[:, None] * stride_qm + offs_k[None, :] * stride_qk) |
|
do_ptrs = DO + (offs_qm[:, None] * stride_qm + offs_k[None, :] * stride_qk) |
|
dq_ptrs = DQ + (offs_qm[:, None] * stride_qm + offs_k[None, :] * stride_qk) |
|
# pointer to row-wise quantities in value-like data |
|
D_ptrs = D + off_hz * N_CTX |
|
m_ptrs = M + off_hz * N_CTX |
|
# initialize dv amd dk |
|
dv = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32) |
|
dk = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32) |
|
# k and v stay in SRAM throughout |
|
k = tl.load(k_ptrs) |
|
v = tl.load(v_ptrs) |
|
# loop over rows |
|
for start_m in range(lo, num_block * BLOCK_M, BLOCK_M): |
|
offs_m_curr = start_m + offs_m |
|
# load q, k, v, do on-chip |
|
q = tl.load(q_ptrs) |
|
# recompute p = softmax(qk, dim=-1).T |
|
# NOTE: `do` is pre-divided by `l`; no normalization here |
|
qk = tl.dot(q, k, trans_b=True) |
|
qk = tl.where(offs_m_curr[:, None] >= (offs_n[None, :]), qk, float("-inf")) |
|
m = tl.load(m_ptrs + offs_m_curr) |
|
p = tl.exp(qk * sm_scale - m[:, None]) |
|
# compute dv |
|
do = tl.load(do_ptrs) |
|
dv += tl.dot(p.to(tl.float16), do, trans_a=True) |
|
# compute dp = dot(v, do) |
|
Di = tl.load(D_ptrs + offs_m_curr) |
|
dp = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) - Di[:, None] |
|
dp += tl.dot(do, v, trans_b=True) |
|
# compute ds = p * (dp - delta[:, None]) |
|
ds = p * dp * sm_scale |
|
# compute dk = dot(ds.T, q) |
|
dk += tl.dot(ds.to(tl.float16), q, trans_a=True) |
|
# # compute dq |
|
dq = tl.load(dq_ptrs, eviction_policy="evict_last") |
|
dq += tl.dot(ds.to(tl.float16), k) |
|
tl.store(dq_ptrs, dq, eviction_policy="evict_last") |
|
# # increment pointers |
|
dq_ptrs += BLOCK_M * stride_qm |
|
q_ptrs += BLOCK_M * stride_qm |
|
do_ptrs += BLOCK_M * stride_qm |
|
# write-back |
|
dv_ptrs = DV + (offs_n[:, None] * stride_qm + offs_k[None, :] * stride_qk) |
|
dk_ptrs = DK + (offs_n[:, None] * stride_kn + offs_k[None, :] * stride_kk) |
|
tl.store(dv_ptrs, dv) |
|
tl.store(dk_ptrs, dk) |
|
|
|
class _TritonFlashAttention(torch.autograd.Function): |
|
|
|
@staticmethod |
|
def forward(ctx, q, k, v, sm_scale): |
|
BLOCK = 128 |
|
# shape constraints |
|
Lq, Lk, Lv = q.shape[-1], k.shape[-1], v.shape[-1] |
|
assert Lq == Lk and Lk == Lv |
|
assert Lk in {16, 32, 64, 128} |
|
o = torch.empty_like(q) |
|
grid = (triton.cdiv(q.shape[2], BLOCK), q.shape[0] * q.shape[1]) |
|
tmp = torch.empty((q.shape[0] * q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32) |
|
L = torch.empty((q.shape[0] * q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32) |
|
m = torch.empty((q.shape[0] * q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32) |
|
num_warps = 4 if Lk <= 64 else 8 |
|
|
|
_fwd_kernel[grid]( |
|
q, |
|
k, |
|
v, |
|
sm_scale, |
|
tmp, |
|
L, |
|
m, |
|
o, |
|
q.stride(0), |
|
q.stride(1), |
|
q.stride(2), |
|
q.stride(3), |
|
k.stride(0), |
|
k.stride(1), |
|
k.stride(2), |
|
k.stride(3), |
|
v.stride(0), |
|
v.stride(1), |
|
v.stride(2), |
|
v.stride(3), |
|
o.stride(0), |
|
o.stride(1), |
|
o.stride(2), |
|
o.stride(3), |
|
q.shape[0], |
|
q.shape[1], |
|
q.shape[2], |
|
BLOCK_M=BLOCK, |
|
BLOCK_N=BLOCK, |
|
BLOCK_DMODEL=Lk, |
|
num_warps=num_warps, |
|
num_stages=1, |
|
) |
|
ctx.save_for_backward(q, k, v, o, L, m) |
|
ctx.BLOCK = BLOCK |
|
ctx.grid = grid |
|
ctx.sm_scale = sm_scale |
|
ctx.BLOCK_DMODEL = Lk |
|
return o |
|
|
|
@staticmethod |
|
def backward(ctx, do): |
|
q, k, v, o, l, m = ctx.saved_tensors |
|
do = do.contiguous() |
|
dq = torch.zeros_like(q, dtype=torch.float32) |
|
dk = torch.empty_like(k) |
|
dv = torch.empty_like(v) |
|
do_scaled = torch.empty_like(do) |
|
delta = torch.empty_like(l) |
|
_bwd_preprocess[(ctx.grid[0] * ctx.grid[1],)]( |
|
o, |
|
do, |
|
l, |
|
do_scaled, |
|
delta, |
|
BLOCK_M=ctx.BLOCK, |
|
D_HEAD=ctx.BLOCK_DMODEL, |
|
) |
|
|
|
# NOTE: kernel currently buggy for other values of `num_warps` |
|
num_warps = 8 |
|
_bwd_kernel[(ctx.grid[1],)]( |
|
q, |
|
k, |
|
v, |
|
ctx.sm_scale, |
|
o, |
|
do_scaled, |
|
dq, |
|
dk, |
|
dv, |
|
l, |
|
m, |
|
delta, |
|
q.stride(0), |
|
q.stride(1), |
|
q.stride(2), |
|
q.stride(3), |
|
k.stride(0), |
|
k.stride(1), |
|
k.stride(2), |
|
k.stride(3), |
|
v.stride(0), |
|
v.stride(1), |
|
v.stride(2), |
|
v.stride(3), |
|
q.shape[0], |
|
q.shape[1], |
|
q.shape[2], |
|
ctx.grid[0], |
|
BLOCK_M=ctx.BLOCK, |
|
BLOCK_N=ctx.BLOCK, |
|
BLOCK_DMODEL=ctx.BLOCK_DMODEL, |
|
num_warps=num_warps, |
|
num_stages=1, |
|
) |
|
return dq, dk, dv, None |
|
|
|
def triton_flash_attention(q, k, v, sm_scale): |
|
""" |
|
Arguments: |
|
q: (batch, nheads, seq, headdim) |
|
k: (batch, nheads, seq, headdim) |
|
v: (batch, nheads, seq, headdim) |
|
sm_scale: float. The scaling of QK^T before applying softmax. |
|
Return: |
|
out: (batch, nheads, seq, headdim) |
|
""" |
|
if HAS_TRITON: |
|
return _TritonFlashAttention.apply(q, k, v, sm_scale) |
|
else: |
|
raise RuntimeError("Triton kernel requires CUDA 11.4+!") |
|
|
|
|
|
if HAS_FLASH_ATTN: |
|
|
|
from einops import rearrange |
|
|
|
class MaskedFlashAttention(torch.nn.Module): |
|
|
|
def __init__(self, num_attention_heads: int, attention_head_size: int, attention_dropout: float) -> None: |
|
super().__init__() |
|
self.num_attention_heads = num_attention_heads |
|
self.attention_head_size = attention_head_size |
|
self.attention_func = FlashAttention(softmax_scale=math.sqrt(attention_head_size), |
|
attention_dropout=attention_dropout) |
|
|
|
def forward(self, query_key_value: torch.Tensor, attention_mask: torch.Tensor, causal=False): |
|
if attention_mask.dtype is not torch.bool: |
|
attention_mask = attention_mask.bool() |
|
qkv = rearrange(query_key_value, 'b s (three h d) -> b s three h d', three=3, h=self.num_attention_heads) |
|
context, _ = self.attention_func(qkv, key_padding_mask=attention_mask, causal=causal) |
|
context = rearrange(context, 'b s h d -> b s (h d)') |
|
return context |
|
|
|
def flash_attention_qkv(qkv, sm_scale, batch_size, seq_len, dropout_p=0., causal=False): |
|
""" |
|
Arguments: |
|
qkv: (batch * seqlen, 3, nheads, headdim) |
|
batch_size: int. |
|
seq_len: int. |
|
sm_scale: float. The scaling of QK^T before applying softmax. |
|
Default to 1 / sqrt(headdim). |
|
dropout_p: float. |
|
causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling). |
|
Return: |
|
out: (total, nheads, headdim). |
|
""" |
|
max_s = seq_len |
|
cu_seqlens = torch.arange(0, (batch_size + 1) * seq_len, step=seq_len, dtype=torch.int32, device=qkv.device) |
|
out = flash_attn_unpadded_qkvpacked_func(qkv, |
|
cu_seqlens, |
|
max_s, |
|
dropout_p, |
|
softmax_scale=sm_scale, |
|
causal=causal) |
|
return out |
|
|
|
def flash_attention_q_kv(q, kv, sm_scale, batch_size, q_seqlen, kv_seqlen, dropout_p=0., causal=False): |
|
""" |
|
Arguments: |
|
q: (batch * q_seqlen, nheads, headdim) |
|
kv: (batch * kv_seqlen, 2, nheads, headdim) |
|
batch_size: int. |
|
seq_len: int. |
|
sm_scale: float. The scaling of QK^T before applying softmax. |
|
Default to 1 / sqrt(headdim). |
|
dropout_p: float. |
|
causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling). |
|
Return: |
|
out: (total, nheads, headdim). |
|
""" |
|
cu_seqlens_q = torch.arange(0, (batch_size + 1) * q_seqlen, step=q_seqlen, dtype=torch.int32, device=q.device) |
|
cu_seqlens_k = torch.arange(0, (batch_size + 1) * kv_seqlen, |
|
step=kv_seqlen, |
|
dtype=torch.int32, |
|
device=kv.device) |
|
out = flash_attn_unpadded_kvpacked_func(q, kv, cu_seqlens_q, cu_seqlens_k, q_seqlen, kv_seqlen, dropout_p, |
|
sm_scale, causal) |
|
return out |
|
|
|
def flash_attention_q_k_v(q, k, v, sm_scale, batch_size, q_seqlen, kv_seqlen, dropout_p=0., causal=False): |
|
""" |
|
Arguments: |
|
q: (batch * q_seqlen, nheads, headdim) |
|
k: (batch * kv_seqlen, nheads, headdim) |
|
v: (batch * kv_seqlen, nheads, headdim) |
|
batch_size: int. |
|
seq_len: int. |
|
dropout_p: float. Dropout probability. |
|
sm_scale: float. The scaling of QK^T before applying softmax. |
|
Default to 1 / sqrt(headdim). |
|
causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling). |
|
Return: |
|
out: (total, nheads, headdim). |
|
""" |
|
cu_seqlens_q = torch.arange(0, (batch_size + 1) * q_seqlen, step=q_seqlen, dtype=torch.int32, device=q.device) |
|
cu_seqlens_kv = torch.arange(0, (batch_size + 1) * kv_seqlen, |
|
step=kv_seqlen, |
|
dtype=torch.int32, |
|
device=k.device) |
|
return flash_attn_unpadded_func(q, k, v, cu_seqlens_q, cu_seqlens_kv, q_seqlen, kv_seqlen, dropout_p, sm_scale, |
|
causal) |
|
|
|
|
|
if HAS_MEM_EFF_ATTN: |
|
|
|
from einops import rearrange |
|
from xformers.ops.fmha import LowerTriangularMask |
|
|
|
class MemoryEfficientAttention(torch.nn.Module): |
|
|
|
def __init__(self, hidden_size: int, num_attention_heads: int, attention_dropout: float = 0.0): |
|
super().__init__() |
|
attention_head_size = hidden_size // num_attention_heads |
|
self.scale = 1 / attention_head_size**0.5 |
|
self.dropout = attention_dropout |
|
|
|
def forward(self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: torch.Tensor): |
|
context = memory_efficient_attention(query, key, value, attention_mask, self.dropout, self.scale) |
|
context = rearrange(context, 'b s h d -> b s (h d)') |
|
return context
|
|
|