ColossalAI/model_zoo/gpt/gpt.py

285 lines
10 KiB
Python

import math
from typing import Callable
import torch
from colossalai import nn as col_nn
from colossalai.nn.layer.utils import CheckpointModule
from colossalai.registry import LAYERS, MODELS, LOSSES
from colossalai.utils import get_current_device
from torch import dtype, nn
__all__ = ['GPT', 'GPTLMLoss', 'gpt2_small', 'gpt2_medium', 'gpt2_large', 'gpt2_xl', 'gpt3']
@LAYERS.register_module
class GPTEmbedding(nn.Module):
def __init__(self,
embedding_dim: int,
vocab_size: int,
max_position_embeddings: int,
num_tokentypes: int = 0,
padding_idx: int = 0,
dropout: float = 0.,
dtype: dtype = None) -> None:
super().__init__()
self.word_embeddings = col_nn.Embedding(vocab_size, embedding_dim, padding_idx=padding_idx, dtype=dtype)
self.position_embeddings = col_nn.Embedding(max_position_embeddings, embedding_dim, dtype=dtype)
if num_tokentypes > 0:
self.tokentype_embeddings = col_nn.Embedding(num_tokentypes, embedding_dim, dtype=dtype)
else:
self.tokentype_embeddings = None
self.dropout = col_nn.Dropout(dropout)
@property
def word_embedding_weight(self):
return self.word_embeddings.weight
def forward(self, input_ids, position_ids=None, tokentype_ids=None):
seq_length = input_ids.size(1)
if position_ids is None:
position_ids = torch.arange(seq_length, dtype=torch.long, device=get_current_device()).unsqueeze(0)
x = self.word_embeddings(input_ids) + self.position_embeddings(position_ids)
if self.tokentype_embeddings is not None and tokentype_ids is not None:
x = x + self.tokentype_embeddings(tokentype_ids)
x = self.dropout(x)
return x
@LAYERS.register_module
class GPTSelfAttention(nn.Module):
def __init__(self,
dim: int,
num_heads: int,
attention_dropout: float,
dropout: float,
bias: bool = True,
dtype: dtype = None) -> None:
super().__init__()
self.attention_head_size = dim // num_heads
self.query_key_value = col_nn.Linear(dim, 3 * dim, dtype=dtype, bias=bias)
self.attention_dropout = col_nn.Dropout(attention_dropout)
self.dense = col_nn.Linear(dim, dim, dtype=dtype, bias=True)
self.dropout = col_nn.Dropout(dropout)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x, attention_mask=None):
qkv = self.query_key_value(x)
all_head_size = qkv.shape[-1] // 3
num_attention_heads = all_head_size // self.attention_head_size
new_qkv_shape = qkv.shape[:-1] + \
(num_attention_heads, 3 * self.attention_head_size)
qkv = qkv.view(new_qkv_shape)
qkv = qkv.permute((0, 2, 1, 3))
q, k, v = torch.chunk(qkv, 3, dim=-1)
x = torch.matmul(q, k.transpose(-1, -2))
x = x / math.sqrt(self.attention_head_size)
# causal mask
q_len, k_len = q.size(-2), k.size(-2)
causal_mask = torch.tril(torch.ones((q_len, k_len), dtype=torch.uint8,
device=get_current_device())).view(1, 1, q_len, k_len).bool()
x = torch.where(causal_mask, x, torch.tensor(-1e4, dtype=x.dtype, device=get_current_device()))
if attention_mask is not None:
x = x + attention_mask
x = self.softmax(x)
x = self.attention_dropout(x)
x = torch.matmul(x, v)
x = x.transpose(1, 2)
new_context_layer_shape = x.size()[:-2] + (all_head_size, )
x = x.reshape(new_context_layer_shape)
x = self.dense(x)
x = self.dropout(x)
return x
@LAYERS.register_module
class GPTMLP(nn.Module):
def __init__(self,
dim: int,
mlp_ratio: int,
activation: Callable,
dropout: float,
dtype: dtype = None,
bias: bool = True):
super().__init__()
self.dense_1 = col_nn.Linear(dim, mlp_ratio * dim, dtype=dtype, bias=bias)
self.activation = activation
self.dense_2 = col_nn.Linear(mlp_ratio * dim, dim, dtype=dtype, bias=bias)
self.dropout = col_nn.Dropout(dropout)
def forward(self, x):
x = self.dense_1(x)
x = self.activation(x)
x = self.dense_2(x)
x = self.dropout(x)
return x
@LAYERS.register_module
class GPTBlock(CheckpointModule):
def __init__(self,
dim: int,
num_heads: int,
mlp_ratio: int,
activation: Callable,
attention_dropout: float = 0.,
dropout: float = 0.,
dtype: dtype = None,
bias: bool = True,
checkpoint: bool = False):
super().__init__(checkpoint=checkpoint)
self.norm1 = col_nn.LayerNorm(normalized_shape=dim, eps=1e-6, dtype=dtype)
self.attn = GPTSelfAttention(dim=dim,
num_heads=num_heads,
attention_dropout=attention_dropout,
dropout=dropout,
bias=bias,
dtype=dtype)
self.norm2 = col_nn.LayerNorm(normalized_shape=dim, eps=1e-6, dtype=dtype)
self.mlp = GPTMLP(dim=dim, mlp_ratio=mlp_ratio, activation=activation, dropout=dropout, dtype=dtype, bias=bias)
def _forward(self, x, attention_mask=None):
x = x + self.attn(self.norm1(x), attention_mask)
x = x + self.mlp(self.norm2(x))
return x, attention_mask
@LAYERS.register_module
class GPTLMHead(nn.Module):
def __init__(self,
dim: int,
vocab_size: int,
word_embeeding_weight: nn.Parameter = None,
bias: bool = False,
dtype: dtype = None) -> None:
super().__init__()
self.dense = col_nn.Classifier(dim, vocab_size, word_embeeding_weight, bias=bias, dtype=dtype)
def forward(self, x):
x = self.dense(x)
return x
@LOSSES.register_module
class GPTLMLoss(nn.Module):
def __init__(self):
super().__init__()
self.loss = col_nn.CrossEntropyLoss()
def forward(self, logits, labels):
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
return self.loss(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
@MODELS.register_module
class GPT(nn.Module):
def __init__(self,
vocab_size: int = 50304,
max_position_embeddings: int = 1024,
dim: int = 768,
num_heads: int = 12,
depth: int = 12,
mlp_ratio: int = 4,
dropout: float = 0.1,
embedding_dropout: float = 0.1,
attention_dropout: float = 0.1,
layernorm_epsilon: float = 1e-5,
activation: Callable = nn.functional.gelu,
checkpoint: bool = False,
dtype: dtype = None,
bias: bool = True,
padding_idx: int = 0) -> None:
super().__init__()
self.dtype = dtype
self.embed = GPTEmbedding(embedding_dim=dim,
vocab_size=vocab_size,
max_position_embeddings=max_position_embeddings,
padding_idx=padding_idx,
dropout=embedding_dropout,
dtype=dtype)
self.blocks = nn.ModuleList([
GPTBlock(
dim=dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
activation=activation,
attention_dropout=attention_dropout,
dropout=dropout,
dtype=dtype,
bias=bias,
checkpoint=checkpoint,
) for _ in range(depth)
])
self.norm = col_nn.LayerNorm(normalized_shape=dim, eps=layernorm_epsilon, dtype=dtype)
self.head = GPTLMHead(dim=dim,
vocab_size=vocab_size,
word_embeeding_weight=self.embed.word_embedding_weight,
bias=bias,
dtype=dtype)
def forward(self, input_ids, attention_mask=None):
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# Adapted from huggingface
if attention_mask is not None:
batch_size = input_ids.shape[0]
attention_mask = attention_mask.view(batch_size, -1)
attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
attention_mask = (1.0 - attention_mask) * -10000.0
x = self.embed(input_ids)
for block in self.blocks:
x, attention_mask = block(x, attention_mask)
x = self.head(self.norm(x))
return x
def _create_gpt_model(**model_kwargs):
model = GPT(**model_kwargs)
return model
@MODELS.register_module
def gpt2_small(**kwargs):
model_kwargs = dict(dim=768, depth=12, num_heads=12, **kwargs)
return _create_gpt_model(**model_kwargs)
@MODELS.register_module
def gpt2_medium(**kwargs):
model_kwargs = dict(dim=1024, depth=24, num_heads=16, **kwargs)
return _create_gpt_model(**model_kwargs)
@MODELS.register_module
def gpt2_large(**kwargs):
model_kwargs = dict(dim=1280, depth=36, num_heads=20, **kwargs)
return _create_gpt_model(**model_kwargs)
@MODELS.register_module
def gpt2_xl(**kwargs):
model_kwargs = dict(dim=1600, depth=48, num_heads=25, **kwargs)
return _create_gpt_model(**model_kwargs)
@MODELS.register_module
def gpt3(**kwargs):
model_kwargs = dict(dim=12288, max_position_embeddings=2048, depth=96, num_heads=96, **kwargs)
return _create_gpt_model(**model_kwargs)