mirror of https://github.com/hpcaitech/ColossalAI
42 lines
1.2 KiB
Python
42 lines
1.2 KiB
Python
import copy
|
|
|
|
from colossalai.shardformer import ShardConfig, ShardFormer
|
|
|
|
|
|
def build_model(
|
|
model_fn,
|
|
enable_fused_normalization=False,
|
|
enable_tensor_parallelism=False,
|
|
enable_flash_attention=False,
|
|
enable_jit_fused=False,
|
|
):
|
|
# create new model
|
|
org_model = model_fn()
|
|
|
|
# shard model
|
|
shard_config = ShardConfig(
|
|
enable_fused_normalization=enable_fused_normalization,
|
|
enable_tensor_parallelism=enable_tensor_parallelism,
|
|
enable_flash_attention=enable_flash_attention,
|
|
enable_jit_fused=enable_jit_fused,
|
|
inference_only=True,
|
|
)
|
|
model_copy = copy.deepcopy(org_model)
|
|
shard_former = ShardFormer(shard_config=shard_config)
|
|
sharded_model, shared_params = shard_former.optimize(model_copy)
|
|
return org_model.cuda(), sharded_model.cuda()
|
|
|
|
|
|
def run_infer(original_model, sharded_model, data_gen_fn, output_transform_fn):
|
|
# prepare input
|
|
data = data_gen_fn()
|
|
data = {k: v.cuda() for k, v in data.items()}
|
|
# run forward
|
|
org_output = original_model(**data)
|
|
org_output = output_transform_fn(org_output)
|
|
|
|
shard_output = sharded_model(**data)
|
|
shard_output = output_transform_fn(shard_output)
|
|
|
|
return org_output, shard_output
|