ColossalAI/tests/test_fx/test_tracer/test_activation_checkpoint_...

63 lines
1.6 KiB
Python

import torch
from torch.fx import GraphModule
from torch.utils.checkpoint import checkpoint
from colossalai.fx import ColoTracer
from colossalai.testing import clear_cache_before_run
class MLP(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear1 = torch.nn.Linear(4, 4)
self.linear2 = torch.nn.Linear(4, 4)
def forward(self, x):
x = self.linear1(x)
x = self.linear2(x)
return x
# Simple module for demonstration
class MyModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.mlp_1 = MLP()
self.mlp_2 = MLP()
self.output = torch.nn.Linear(4, 4)
def forward(self, x):
x = checkpoint(self.mlp_1, x)
x = checkpoint(self.mlp_2, x)
x = self.output(x)
return x
@clear_cache_before_run()
def test_activation_checkpoint_annotation():
module = MyModule()
# test tracing with activation checkpoint
tracer = ColoTracer(trace_act_ckpt=True)
graph = tracer.trace(module)
gm = GraphModule(module, graph)
for node in gm.graph.nodes:
if node.name in ["mlp_1_linear1", "mlp_1_linear2"]:
assert node.meta.get("activation_checkpoint", -1) == 0
for node in gm.graph.nodes:
if node.name in ["mlp_2_linear1", "mlp_2_linear2"]:
assert node.meta.get("activation_checkpoint", -1) == 1
tracer = ColoTracer(trace_act_ckpt=False)
graph = tracer.trace(module)
gm = GraphModule(module, graph)
for node in gm.graph.nodes:
assert not hasattr(node, "activation_checkpoint")
if __name__ == "__main__":
test_activation_checkpoint_annotation()