mirror of https://github.com/hpcaitech/ColossalAI
105 lines
3.7 KiB
Python
105 lines
3.7 KiB
Python
import torch
|
|
import transformers
|
|
|
|
from ..registry import ModelAttribute, model_zoo
|
|
|
|
# ===============================
|
|
# Register single-sentence ALBERT
|
|
# ===============================
|
|
BATCH_SIZE = 2
|
|
SEQ_LENGTH = 16
|
|
|
|
|
|
def data_gen_fn():
|
|
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
|
token_type_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
|
attention_mask = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
|
return dict(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask)
|
|
|
|
|
|
def data_gen_for_pretrain():
|
|
inputs = data_gen_fn()
|
|
inputs["labels"] = inputs["input_ids"].clone()
|
|
inputs["sentence_order_label"] = torch.zeros(BATCH_SIZE, dtype=torch.int64)
|
|
return inputs
|
|
|
|
|
|
output_transform_fn = lambda x: x
|
|
|
|
config = transformers.AlbertConfig(
|
|
embedding_size=128, hidden_size=128, num_hidden_layers=2, num_attention_heads=4, intermediate_size=256
|
|
)
|
|
|
|
model_zoo.register(
|
|
name="transformers_albert",
|
|
model_fn=lambda: transformers.AlbertModel(config, add_pooling_layer=False),
|
|
data_gen_fn=data_gen_fn,
|
|
output_transform_fn=output_transform_fn,
|
|
model_attribute=ModelAttribute(has_control_flow=True),
|
|
)
|
|
model_zoo.register(
|
|
name="transformers_albert_for_pretraining",
|
|
model_fn=lambda: transformers.AlbertForPreTraining(config),
|
|
data_gen_fn=data_gen_for_pretrain,
|
|
output_transform_fn=lambda x: dict(loss=x.loss),
|
|
model_attribute=ModelAttribute(has_control_flow=True),
|
|
)
|
|
model_zoo.register(
|
|
name="transformers_albert_for_masked_lm",
|
|
model_fn=lambda: transformers.AlbertForMaskedLM(config),
|
|
data_gen_fn=data_gen_fn,
|
|
output_transform_fn=output_transform_fn,
|
|
model_attribute=ModelAttribute(has_control_flow=True),
|
|
)
|
|
model_zoo.register(
|
|
name="transformers_albert_for_sequence_classification",
|
|
model_fn=lambda: transformers.AlbertForSequenceClassification(config),
|
|
data_gen_fn=data_gen_fn,
|
|
output_transform_fn=output_transform_fn,
|
|
model_attribute=ModelAttribute(has_control_flow=True),
|
|
)
|
|
model_zoo.register(
|
|
name="transformers_albert_for_token_classification",
|
|
model_fn=lambda: transformers.AlbertForTokenClassification(config),
|
|
data_gen_fn=data_gen_fn,
|
|
output_transform_fn=output_transform_fn,
|
|
model_attribute=ModelAttribute(has_control_flow=True),
|
|
)
|
|
|
|
# ===============================
|
|
# Register multi-sentence ALBERT
|
|
# ===============================
|
|
|
|
|
|
def data_gen_for_qa():
|
|
question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
|
|
tokenizer = transformers.BertTokenizer.from_pretrained("bert-base-uncased")
|
|
inputs = tokenizer(question, text, return_tensors="pt")
|
|
return inputs
|
|
|
|
|
|
def data_gen_for_mcq():
|
|
prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
|
|
choice0 = "It is eaten with a fork and a knife."
|
|
choice1 = "It is eaten while held in the hand."
|
|
tokenizer = transformers.BertTokenizer.from_pretrained("bert-base-uncased")
|
|
encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
|
|
encoding = {k: v.unsqueeze(0) for k, v in encoding.items()}
|
|
return encoding
|
|
|
|
|
|
model_zoo.register(
|
|
name="transformers_albert_for_question_answering",
|
|
model_fn=lambda: transformers.AlbertForQuestionAnswering(config),
|
|
data_gen_fn=data_gen_for_qa,
|
|
output_transform_fn=output_transform_fn,
|
|
model_attribute=ModelAttribute(has_control_flow=True),
|
|
)
|
|
model_zoo.register(
|
|
name="transformers_albert_for_multiple_choice",
|
|
model_fn=lambda: transformers.AlbertForMultipleChoice(config),
|
|
data_gen_fn=data_gen_for_mcq,
|
|
output_transform_fn=output_transform_fn,
|
|
model_attribute=ModelAttribute(has_control_flow=True),
|
|
)
|