ColossalAI/applications/Chat/coati/trainer/callbacks/save_checkpoint.py

77 lines
2.8 KiB
Python

import os
import torch.distributed as dist
from coati.trainer.strategies import GeminiStrategy, LowLevelZeroStrategy, Strategy
from coati.trainer.utils import is_rank_0
from torch import nn
from torch.optim import Optimizer
from .base import Callback
class SaveCheckpoint(Callback):
"""
The callback for saving checkpoint for coati.
Only support saving actor and critic model.
A typical architecture of the saved checkpoint would be:
- checkpoint
- episode_x
- actor.pt
- actor-optim-rank-0.pt
- actor-optim-rank-1.pt
- critic.pt
- critic-optim-rank-0.pt
- critic-optim-rank-1.pt
- ...
Args:
path(str): the base path you want to save checkpoint, the checkpoint would be saved at `path/checkpoint`
interval(int): the interval episode of saving checkpoint
strategy(Strategy): the strategy used to train
actor(nn.Module): the actor model
critic(nn.Module): the critic model
actor_optim(Optimizer): the optimizer of actor
critic_optim(Optimizer): the optimizer of critic
"""
def __init__(
self,
path: str,
interval: int,
strategy: Strategy,
actor: nn.Module = None,
critic: nn.Module = None,
actor_optim: Optimizer = None,
critic_optim: Optimizer = None,
) -> None:
super().__init__()
self.path = os.path.join(path, "checkpoint")
self.interval = interval
self.strategy = strategy
self.model_dict = {"actor": [actor, actor_optim], "critic": [critic, critic_optim]}
def on_episode_end(self, episode: int) -> None:
if (episode + 1) % self.interval != 0:
return
base_path = os.path.join(self.path, f"episode_{episode}")
if not os.path.exists(base_path):
os.makedirs(base_path)
for model in self.model_dict.keys():
# save model
if self.model_dict[model][0] is None:
# saving only optimizer states is meaningless, so it would be skipped
continue
model_path = os.path.join(base_path, f"{model}.pt")
self.strategy.save_model(model=self.model_dict[model][0], path=model_path, only_rank0=True)
# save optimizer
if self.model_dict[model][1] is None:
continue
only_rank0 = not isinstance(self.strategy, (LowLevelZeroStrategy, GeminiStrategy))
rank = 0 if is_rank_0() else dist.get_rank()
optim_path = os.path.join(base_path, f"{model}-optim-rank-{rank}.pt")
self.strategy.save_optimizer(optimizer=self.model_dict[model][1], path=optim_path, only_rank0=only_rank0)