mirror of https://github.com/hpcaitech/ColossalAI
284 lines
11 KiB
Python
284 lines
11 KiB
Python
# copied from https://github.com/qwopqwop200/GPTQ-for-LLaMa/blob/past/quant.py
|
|
|
|
import math
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
|
|
def quantize(x, scale, zero, maxq):
|
|
q = torch.clamp(torch.round(x / scale) + zero, 0, maxq)
|
|
return scale * (q - zero)
|
|
|
|
|
|
class Quantizer(nn.Module):
|
|
def __init__(self, shape=1):
|
|
super(Quantizer, self).__init__()
|
|
self.register_buffer("maxq", torch.tensor(0))
|
|
self.register_buffer("scale", torch.zeros(shape))
|
|
self.register_buffer("zero", torch.zeros(shape))
|
|
|
|
def configure(self, bits, perchannel=False, sym=True, mse=False, norm=2.4, grid=100, maxshrink=0.8):
|
|
self.maxq = torch.tensor(2**bits - 1)
|
|
self.perchannel = perchannel
|
|
self.sym = sym
|
|
self.mse = mse
|
|
self.norm = norm
|
|
self.grid = grid
|
|
self.maxshrink = maxshrink
|
|
|
|
def find_params(self, x, weight=False):
|
|
dev = x.device
|
|
self.maxq = self.maxq.to(dev)
|
|
|
|
shape = x.shape
|
|
if self.perchannel:
|
|
if weight:
|
|
x = x.flatten(1)
|
|
else:
|
|
if len(shape) == 4:
|
|
x = x.permute([1, 0, 2, 3])
|
|
x = x.flatten(1)
|
|
if len(shape) == 3:
|
|
x = x.reshape((-1, shape[-1])).t()
|
|
if len(shape) == 2:
|
|
x = x.t()
|
|
else:
|
|
x = x.flatten().unsqueeze(0)
|
|
|
|
tmp = torch.zeros(x.shape[0], device=dev)
|
|
xmin = torch.minimum(x.min(1)[0], tmp)
|
|
xmax = torch.maximum(x.max(1)[0], tmp)
|
|
|
|
if self.sym:
|
|
xmax = torch.maximum(torch.abs(xmin), xmax)
|
|
tmp = xmin < 0
|
|
if torch.any(tmp):
|
|
xmin[tmp] = -xmax[tmp]
|
|
tmp = (xmin == 0) & (xmax == 0)
|
|
xmin[tmp] = -1
|
|
xmax[tmp] = +1
|
|
|
|
self.scale = (xmax - xmin) / self.maxq
|
|
if self.sym:
|
|
self.zero = torch.full_like(self.scale, (self.maxq + 1) / 2)
|
|
else:
|
|
self.zero = torch.round(-xmin / self.scale)
|
|
|
|
if self.mse:
|
|
best = torch.full([x.shape[0]], float("inf"), device=dev)
|
|
for i in range(int(self.maxshrink * self.grid)):
|
|
p = 1 - i / self.grid
|
|
xmin1 = p * xmin
|
|
xmax1 = p * xmax
|
|
scale1 = (xmax1 - xmin1) / self.maxq
|
|
zero1 = torch.round(-xmin1 / scale1) if not self.sym else self.zero
|
|
q = quantize(x, scale1.unsqueeze(1), zero1.unsqueeze(1), self.maxq)
|
|
q -= x
|
|
q.abs_()
|
|
q.pow_(self.norm)
|
|
err = torch.sum(q, 1)
|
|
tmp = err < best
|
|
if torch.any(tmp):
|
|
best[tmp] = err[tmp]
|
|
self.scale[tmp] = scale1[tmp]
|
|
self.zero[tmp] = zero1[tmp]
|
|
if not self.perchannel:
|
|
if weight:
|
|
tmp = shape[0]
|
|
else:
|
|
tmp = shape[1] if len(shape) != 3 else shape[2]
|
|
self.scale = self.scale.repeat(tmp)
|
|
self.zero = self.zero.repeat(tmp)
|
|
|
|
if weight:
|
|
shape = [-1] + [1] * (len(shape) - 1)
|
|
self.scale = self.scale.reshape(shape)
|
|
self.zero = self.zero.reshape(shape)
|
|
return
|
|
if len(shape) == 4:
|
|
self.scale = self.scale.reshape((1, -1, 1, 1))
|
|
self.zero = self.zero.reshape((1, -1, 1, 1))
|
|
if len(shape) == 3:
|
|
self.scale = self.scale.reshape((1, 1, -1))
|
|
self.zero = self.zero.reshape((1, 1, -1))
|
|
if len(shape) == 2:
|
|
self.scale = self.scale.unsqueeze(0)
|
|
self.zero = self.zero.unsqueeze(0)
|
|
|
|
def quantize(self, x):
|
|
if self.ready():
|
|
return quantize(x, self.scale, self.zero, self.maxq)
|
|
return x
|
|
|
|
def enabled(self):
|
|
return self.maxq > 0
|
|
|
|
def ready(self):
|
|
return torch.all(self.scale != 0)
|
|
|
|
|
|
try:
|
|
import quant_cuda
|
|
except:
|
|
print("CUDA extension not installed.")
|
|
|
|
# Assumes layer is perfectly divisible into 256 * 256 blocks
|
|
|
|
|
|
class QuantLinear(nn.Module):
|
|
def __init__(self, bits, groupsize, infeatures, outfeatures):
|
|
super().__init__()
|
|
if bits not in [2, 3, 4, 8]:
|
|
raise NotImplementedError("Only 2,3,4,8 bits are supported.")
|
|
self.infeatures = infeatures
|
|
self.outfeatures = outfeatures
|
|
self.bits = bits
|
|
if groupsize != -1 and groupsize < 32 and groupsize != int(math.pow(2, int(math.log2(groupsize)))):
|
|
raise NotImplementedError("groupsize supports powers of 2 greater than 32. (e.g. : 32,64,128,etc)")
|
|
groupsize = groupsize if groupsize != -1 else infeatures
|
|
self.groupsize = groupsize
|
|
self.register_buffer(
|
|
"qzeros", torch.zeros((math.ceil(infeatures / groupsize), outfeatures // 256 * (bits * 8)), dtype=torch.int)
|
|
)
|
|
self.register_buffer("scales", torch.zeros((math.ceil(infeatures / groupsize), outfeatures)))
|
|
self.register_buffer("bias", torch.zeros(outfeatures))
|
|
self.register_buffer("qweight", torch.zeros((infeatures // 256 * (bits * 8), outfeatures), dtype=torch.int))
|
|
self._initialized_quant_state = False
|
|
|
|
def pack(self, linear, scales, zeros):
|
|
scales = scales.t().contiguous()
|
|
zeros = zeros.t().contiguous()
|
|
scale_zeros = zeros * scales
|
|
self.scales = scales.clone()
|
|
if linear.bias is not None:
|
|
self.bias = linear.bias.clone()
|
|
|
|
intweight = []
|
|
for idx in range(self.infeatures):
|
|
g_idx = idx // self.groupsize
|
|
intweight.append(
|
|
torch.round((linear.weight.data[:, idx] + scale_zeros[g_idx]) / self.scales[g_idx]).to(torch.int)[
|
|
:, None
|
|
]
|
|
)
|
|
intweight = torch.cat(intweight, dim=1)
|
|
intweight = intweight.t().contiguous()
|
|
intweight = intweight.numpy().astype(np.uint32)
|
|
qweight = np.zeros((intweight.shape[0] // 256 * (self.bits * 8), intweight.shape[1]), dtype=np.uint32)
|
|
i = 0
|
|
row = 0
|
|
while row < qweight.shape[0]:
|
|
if self.bits in [2, 4, 8]:
|
|
for j in range(i, i + (32 // self.bits)):
|
|
qweight[row] |= intweight[j] << (self.bits * (j - i))
|
|
i += 32 // self.bits
|
|
row += 1
|
|
elif self.bits == 3:
|
|
for j in range(i, i + 10):
|
|
qweight[row] |= intweight[j] << (3 * (j - i))
|
|
i += 10
|
|
qweight[row] |= intweight[i] << 30
|
|
row += 1
|
|
qweight[row] |= (intweight[i] >> 2) & 1
|
|
i += 1
|
|
for j in range(i, i + 10):
|
|
qweight[row] |= intweight[j] << (3 * (j - i) + 1)
|
|
i += 10
|
|
qweight[row] |= intweight[i] << 31
|
|
row += 1
|
|
qweight[row] |= (intweight[i] >> 1) & 0x3
|
|
i += 1
|
|
for j in range(i, i + 10):
|
|
qweight[row] |= intweight[j] << (3 * (j - i) + 2)
|
|
i += 10
|
|
row += 1
|
|
else:
|
|
raise NotImplementedError("Only 2,3,4,8 bits are supported.")
|
|
|
|
qweight = qweight.astype(np.int32)
|
|
self.qweight = torch.from_numpy(qweight)
|
|
|
|
zeros -= 1
|
|
zeros = zeros.numpy().astype(np.uint32)
|
|
qzeros = np.zeros((zeros.shape[0], zeros.shape[1] // 256 * (self.bits * 8)), dtype=np.uint32)
|
|
i = 0
|
|
col = 0
|
|
while col < qzeros.shape[1]:
|
|
if self.bits in [2, 4, 8]:
|
|
for j in range(i, i + (32 // self.bits)):
|
|
qzeros[:, col] |= zeros[:, j] << (self.bits * (j - i))
|
|
i += 32 // self.bits
|
|
col += 1
|
|
elif self.bits == 3:
|
|
for j in range(i, i + 10):
|
|
qzeros[:, col] |= zeros[:, j] << (3 * (j - i))
|
|
i += 10
|
|
qzeros[:, col] |= zeros[:, i] << 30
|
|
col += 1
|
|
qzeros[:, col] |= (zeros[:, i] >> 2) & 1
|
|
i += 1
|
|
for j in range(i, i + 10):
|
|
qzeros[:, col] |= zeros[:, j] << (3 * (j - i) + 1)
|
|
i += 10
|
|
qzeros[:, col] |= zeros[:, i] << 31
|
|
col += 1
|
|
qzeros[:, col] |= (zeros[:, i] >> 1) & 0x3
|
|
i += 1
|
|
for j in range(i, i + 10):
|
|
qzeros[:, col] |= zeros[:, j] << (3 * (j - i) + 2)
|
|
i += 10
|
|
col += 1
|
|
else:
|
|
raise NotImplementedError("Only 2,3,4,8 bits are supported.")
|
|
|
|
qzeros = qzeros.astype(np.int32)
|
|
self.qzeros = torch.from_numpy(qzeros)
|
|
|
|
def forward(self, x):
|
|
intermediate_dtype = torch.float32
|
|
|
|
if not self._initialized_quant_state:
|
|
# Do we even have a bias? Check for at least one non-zero element.
|
|
if self.bias is not None and bool(torch.any(self.bias != 0)):
|
|
# Then make sure it's the right type.
|
|
self.bias.data = self.bias.data.to(intermediate_dtype)
|
|
else:
|
|
self.bias = None
|
|
|
|
outshape = list(x.shape)
|
|
outshape[-1] = self.outfeatures
|
|
x = x.reshape(-1, x.shape[-1])
|
|
if self.bias is None:
|
|
y = torch.zeros(x.shape[0], outshape[-1], dtype=intermediate_dtype, device=x.device)
|
|
else:
|
|
y = self.bias.clone().repeat(x.shape[0], 1)
|
|
|
|
output_dtype = x.dtype
|
|
x = x.to(intermediate_dtype)
|
|
if self.bits == 2:
|
|
quant_cuda.vecquant2matmul(x, self.qweight, y, self.scales, self.qzeros, self.groupsize)
|
|
elif self.bits == 3:
|
|
quant_cuda.vecquant3matmul(x, self.qweight, y, self.scales, self.qzeros, self.groupsize)
|
|
elif self.bits == 4:
|
|
quant_cuda.vecquant4matmul(x, self.qweight, y, self.scales, self.qzeros, self.groupsize)
|
|
elif self.bits == 8:
|
|
quant_cuda.vecquant8matmul(x, self.qweight, y, self.scales, self.qzeros, self.groupsize)
|
|
else:
|
|
raise NotImplementedError("Only 2,3,4,8 bits are supported.")
|
|
y = y.to(output_dtype)
|
|
return y.reshape(outshape)
|
|
|
|
|
|
def make_quant(module, names, bits, groupsize, name=""):
|
|
if isinstance(module, QuantLinear):
|
|
return
|
|
for attr in dir(module):
|
|
tmp = getattr(module, attr)
|
|
name1 = name + "." + attr if name != "" else attr
|
|
if name1 in names:
|
|
setattr(module, attr, QuantLinear(bits, groupsize, tmp.in_features, tmp.out_features))
|
|
for name1, child in module.named_children():
|
|
make_quant(child, names, bits, groupsize, name + "." + name1 if name != "" else name1)
|