ColossalAI/applications/Chat/coati/models/bloom/bloom_actor.py

37 lines
1.0 KiB
Python

from typing import Optional
from transformers import BloomConfig, BloomForCausalLM
from ..base import Actor
class BLOOMActor(Actor):
"""
BLOOM Actor model.
Args:
pretrained (str): Pretrained model name or path.
config (BloomConfig): Model config.
checkpoint (bool): Enable gradient checkpointing.
lora_rank (int): LoRA rank.
lora_train_bias (str): LoRA bias training mode.
"""
def __init__(
self,
pretrained: str = None,
config: Optional[BloomConfig] = None,
checkpoint: bool = False,
lora_rank: int = 0,
lora_train_bias: str = "none",
) -> None:
if pretrained is not None:
model = BloomForCausalLM.from_pretrained(pretrained)
elif config is not None:
model = BloomForCausalLM(config)
else:
model = BloomForCausalLM(BloomConfig())
if checkpoint:
model.gradient_checkpointing_enable()
super().__init__(model, lora_rank, lora_train_bias)