You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/nn/optimizer/colossalai_optimizer.py

48 lines
1.2 KiB

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import torch
import torch.nn as nn
from torch import Tensor
from torch.optim import Optimizer
from colossalai.utils import clip_grad_norm_fp32
class ColossalaiOptimizer(Optimizer):
def __init__(self, optim: Optimizer):
self.optim = optim
@property
def param_groups(self):
return self.optim.param_groups
@property
def defaults(self):
return self.optim.defaults
def add_param_group(self, *args, **kwargs):
return self.optim.add_param_group(*args, **kwargs)
def step(self, *args, **kwargs):
return self.optim.step(*args, **kwargs)
def zero_grad(self, *args, **kwargs):
self.optim.zero_grad(*args, **kwargs)
def load_state_dict(self, *args, **kwargs):
self.optim.load_state_dict(*args, **kwargs)
def state_dict(self):
return self.optim.state_dict()
def backward(self, loss: Tensor):
loss.backward()
def backward_by_grad(self, tensor: Tensor, grad: Tensor):
torch.autograd.backward(tensors=tensor, grad_tensors=grad)
def clip_grad_norm(self, model: nn.Module, max_norm: float):
if max_norm > 0.0:
clip_grad_norm_fp32(model.parameters(), max_norm)