ColossalAI/tests/test_moe/test_moe_group.py

71 lines
2.5 KiB
Python

from functools import partial
import pytest
import torch.nn as nn
import torch.multiprocessing as mp
import torch.distributed as dist
import colossalai
from colossalai.utils import free_port, get_current_device
from colossalai.nn.layer.moe import Experts
from colossalai.core import MOE_CONTEXT
from colossalai.utils.moe import sync_moe_model_param
from colossalai.testing import assert_equal_in_group
D_MODEL = 4
D_FF = 8
CONFIG = dict()
def run_test(rank, port):
world_size = 4
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
expert_module = nn.Linear
expert_factor = dict(in_features=D_MODEL, out_features=D_FF, device=get_current_device())
MOE_CONTEXT.setup(42) # MOE environment initialization
exp0 = Experts(expert_module, 1, **expert_factor)
exp1 = Experts(expert_module, 2, **expert_factor)
exp2 = Experts(expert_module, 4, **expert_factor)
exp3 = Experts(expert_module, 8, **expert_factor)
assert exp0.num_local_experts == 1
assert exp1.num_local_experts == 1
assert exp2.num_local_experts == 1
assert exp3.num_local_experts == 2
# experts deployment passed
parallel_info_dict = MOE_CONTEXT.parallel_info_dict
rank = dist.get_rank()
assert len(parallel_info_dict) == 3
assert dist.get_rank(parallel_info_dict[4].ep_group) == rank
assert dist.get_rank(parallel_info_dict[2].ep_group) == rank % 2
assert dist.get_rank(parallel_info_dict[1].ep_group) == 0
assert dist.get_rank(parallel_info_dict[4].dp_group) == 0
assert dist.get_rank(parallel_info_dict[2].dp_group) == rank // 2
assert dist.get_rank(parallel_info_dict[1].dp_group) == rank
# group creation passed
model = nn.ModuleList([exp0, exp1, exp2, exp3])
model = model.to(get_current_device())
sync_moe_model_param(model)
assert_equal_in_group(exp0.experts[0].weight.data, parallel_info_dict[1].dp_group)
assert_equal_in_group(exp0.experts[0].bias.data, parallel_info_dict[1].dp_group)
# MOE experts layout success when ep_size = 1
assert_equal_in_group(exp1.experts[0].weight.data, parallel_info_dict[2].dp_group)
assert_equal_in_group(exp1.experts[0].bias.data, parallel_info_dict[2].dp_group)
# MOE experts layout success when ep_size = 2
@pytest.mark.dist
def test_moe_initialization():
world_size = 4
run_func = partial(run_test, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_moe_initialization()