ColossalAI/colossalai/fx/profiler/profiler_module/attention.py

82 lines
2.2 KiB
Python

from typing import Optional, Tuple
import torch
from ..registry import meta_profiler_module
# TODO: This is hard to compute memory cost
@meta_profiler_module.register(torch.nn.MultiheadAttention)
def torch_nn_msa(self: torch.nn.MultiheadAttention,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
key_padding_mask: Optional[torch.Tensor] = None,
need_weights: bool = True,
attn_mask: Optional[torch.Tensor] = None,
average_attn_weights: bool = True) -> Tuple[int, int]:
if getattr(self, 'batch_first', False):
batch_size = query.shape[0]
len_idx = 1
else:
batch_size = query.shape[1]
len_idx = 0
dim_idx = 2
qdim = query.shape[dim_idx]
kdim = key.shape[dim_idx]
vdim = value.shape[dim_idx]
qlen = query.shape[len_idx]
klen = key.shape[len_idx]
vlen = value.shape[len_idx]
num_heads = self.num_heads
assert qdim == self.embed_dim
if self.kdim is None:
assert kdim == qdim
if self.vdim is None:
assert vdim == qdim
flops = 0
macs = 0
# Q scaling
flops += qlen * qdim
# Initial projections
flops += 2 * ((qlen * qdim * qdim) # QW
+ (klen * kdim * kdim) # KW
+ (vlen * vdim * vdim) # VW
)
macs += ((qlen * qdim * qdim) # QW
+ (klen * kdim * kdim) # KW
+ (vlen * vdim * vdim) # VW
)
if self.in_proj_bias is not None:
flops += (qlen + klen + vlen) * qdim
# attention heads: scale, matmul, softmax, matmul
qk_head_dim = qdim // num_heads
v_head_dim = vdim // num_heads
head_flops = (
2 * (qlen * klen * qk_head_dim) # QK^T
+ (qlen * klen) # softmax
+ 2 * (qlen * klen * v_head_dim) # AV
)
head_macs = ((qlen * klen * qk_head_dim) # QK^T
+ 2 * (qlen * klen * v_head_dim) # AV
)
flops += num_heads * head_flops
macs += num_heads * head_flops
# final projection, bias is always enabled
flops += qlen * vdim * (vdim + 1)
flops *= batch_size
macs *= batch_size
return flops, macs