ColossalAI/colossalai/fx/profiler/profiler_function/normalization.py

67 lines
2.1 KiB
Python

from typing import List, Optional, Tuple
import torch
from ..registry import meta_profiler_function
@meta_profiler_function.register(torch.nn.functional.instance_norm)
def torch_nn_func_instancenorm(
input: torch.Tensor,
running_mean: Optional[torch.Tensor] = None,
running_var: Optional[torch.Tensor] = None,
weight: Optional[torch.Tensor] = None,
bias: Optional[torch.Tensor] = None,
use_input_stats: bool = True,
momentum: float = 0.1,
eps: float = 1e-5,
):
has_affine = weight is not None
flops = input.numel() * (5 if has_affine else 4)
macs = 0
return flops, macs
@meta_profiler_function.register(torch.nn.functional.group_norm)
def torch_nn_func_groupnorm(input: torch.Tensor,
num_groups: int,
weight: Optional[torch.Tensor] = None,
bias: Optional[torch.Tensor] = None,
eps: float = 1e-5) -> Tuple[int, int]:
has_affine = weight is not None
flops = input.numel() * (5 if has_affine else 4)
macs = 0
return flops, macs
@meta_profiler_function.register(torch.nn.functional.layer_norm)
def torch_nn_func_layernorm(
input: torch.Tensor,
normalized_shape: List[int],
weight: Optional[torch.Tensor] = None,
bias: Optional[torch.Tensor] = None,
eps: float = 1e-5,
) -> Tuple[int, int]:
has_affine = weight is not None
flops = input.numel() * (5 if has_affine else 4)
macs = 0
return flops, macs
@meta_profiler_function.register(torch.nn.functional.batch_norm)
def torch_nn_func_batchnorm(
input: torch.Tensor,
running_mean: Optional[torch.Tensor],
running_var: Optional[torch.Tensor],
weight: Optional[torch.Tensor] = None,
bias: Optional[torch.Tensor] = None,
training: bool = False,
momentum: float = 0.1,
eps: float = 1e-5,
) -> Tuple[int, int]:
has_affine = weight is not None
if training:
flops = input.numel() * (2 if has_affine else 1)
else:
flops = input.numel() * (5 if has_affine else 4)
macs = 0
return flops, macs