mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
143 lines
5.2 KiB
143 lines
5.2 KiB
import pytest
|
|
import torch
|
|
from packaging import version
|
|
|
|
from colossalai.kernel.triton import flash_decoding_attention
|
|
from colossalai.utils import get_current_device
|
|
from tests.test_infer.test_ops.triton.kernel_utils import (
|
|
convert_kv_unpad_to_padded,
|
|
create_attention_mask,
|
|
generate_caches_and_block_tables_v2,
|
|
torch_attn_ref,
|
|
)
|
|
|
|
try:
|
|
import triton # noqa
|
|
|
|
HAS_TRITON = True
|
|
except ImportError:
|
|
HAS_TRITON = False
|
|
print("please install triton from https://github.com/openai/triton")
|
|
|
|
TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse("11.4")
|
|
|
|
HEAD_DIM = 128
|
|
|
|
|
|
def prepare_data(
|
|
bsz: int,
|
|
num_attn_heads: int,
|
|
num_kv_heads: int,
|
|
head_dim: int,
|
|
same_context_len: bool,
|
|
q_len: int,
|
|
max_kv_seq_len: int,
|
|
dtype=torch.float16,
|
|
device="cuda",
|
|
):
|
|
# Use the provided maximum sequence length for each sequence when testing with teh same context length,
|
|
# otherwise generate random context lengths.
|
|
# returns
|
|
# q [bsz, num_attn_heads, q_len, head_dim]
|
|
# k_unpad/v_unpad [num_tokens, num_kv_heads, head_dim]
|
|
kv_lengths = (
|
|
torch.tensor([max_kv_seq_len for _ in range(bsz)], dtype=torch.int32, device=device)
|
|
if same_context_len
|
|
else torch.randint(low=1, high=max_kv_seq_len, size=(bsz,), dtype=torch.int32, device=device)
|
|
)
|
|
num_tokens = torch.sum(kv_lengths).item()
|
|
|
|
q_size = (bsz, q_len, num_attn_heads, head_dim)
|
|
q = torch.empty(size=q_size, dtype=dtype, device=device).normal_(mean=0.0, std=0.5).transpose(1, 2)
|
|
kv_size = (num_tokens, 2 * num_kv_heads, head_dim)
|
|
kv_unpad = torch.empty(size=kv_size, dtype=dtype, device=device).normal_(mean=0.0, std=0.5)
|
|
k_unpad, v_unpad = torch.split(kv_unpad, [num_kv_heads, num_kv_heads], dim=-2)
|
|
|
|
return q, k_unpad, v_unpad, kv_lengths
|
|
|
|
|
|
@pytest.mark.skipif(not (HAS_TRITON and TRITON_CUDA_SUPPORT), reason="requires triton")
|
|
@pytest.mark.parametrize("bsz", [4, 7, 32])
|
|
@pytest.mark.parametrize("block_size", [16, 32, 64])
|
|
@pytest.mark.parametrize("max_num_blocks_per_seq", [8, 32])
|
|
@pytest.mark.parametrize("num_attn_heads", [16])
|
|
@pytest.mark.parametrize("kv_group_num", [1, 2, 16])
|
|
@pytest.mark.parametrize("same_context_len", [True, False])
|
|
@pytest.mark.parametrize("q_len", [1, 5])
|
|
def test_flash_decoding(
|
|
bsz: int,
|
|
block_size: int,
|
|
max_num_blocks_per_seq: int,
|
|
num_attn_heads: int,
|
|
kv_group_num: int,
|
|
same_context_len: bool,
|
|
q_len: int,
|
|
):
|
|
torch.manual_seed(123)
|
|
torch.cuda.empty_cache()
|
|
torch.cuda.synchronize()
|
|
torch.cuda.reset_peak_memory_stats()
|
|
|
|
num_kv_heads = num_attn_heads // kv_group_num
|
|
assert isinstance(num_kv_heads, int) and num_kv_heads > 0, "Invalid number of kv heads."
|
|
max_seq_len = block_size * max_num_blocks_per_seq
|
|
dtype = torch.float16
|
|
device = get_current_device()
|
|
q, k_unpad, v_unpad, kv_lengths = prepare_data(
|
|
bsz, num_attn_heads, num_kv_heads, HEAD_DIM, same_context_len, q_len, max_seq_len, dtype, device
|
|
)
|
|
# The maximum sequence length in the batch (if context lengths randomly generated)
|
|
max_kv_len_in_b = kv_lengths.max().item()
|
|
|
|
k_torch = convert_kv_unpad_to_padded(k_unpad, kv_lengths, bsz, max_kv_len_in_b)
|
|
v_torch = convert_kv_unpad_to_padded(v_unpad, kv_lengths, bsz, max_kv_len_in_b)
|
|
attention_mask = create_attention_mask(kv_lengths, bsz, q_len, max_kv_len_in_b, q.device)
|
|
out_torch = torch_attn_ref(
|
|
q, k_torch, v_torch, attention_mask, bsz, q_len, max_kv_len_in_b, num_attn_heads, num_kv_heads, HEAD_DIM
|
|
)
|
|
|
|
k_cache, v_cache, block_tables = generate_caches_and_block_tables_v2(
|
|
k_unpad, v_unpad, kv_lengths, bsz, max_num_blocks_per_seq, block_size, dtype, device
|
|
)
|
|
block_tables = block_tables.to(device=device)
|
|
# The maximum block length splitted on kv should be the kv cache block size
|
|
kv_max_split_num = (max_kv_len_in_b + block_size - 1) // block_size
|
|
output = torch.empty((bsz * q_len, num_attn_heads, HEAD_DIM), dtype=q.dtype, device=q.device)
|
|
mid_output = torch.empty(
|
|
size=(bsz * q_len, num_attn_heads, kv_max_split_num, HEAD_DIM), dtype=torch.float32, device=q.device
|
|
)
|
|
mid_output_lse = torch.empty(
|
|
size=(bsz * q_len, num_attn_heads, kv_max_split_num), dtype=torch.float32, device=q.device
|
|
)
|
|
sm_scale = 1.0 / (HEAD_DIM**0.5)
|
|
# Here we use different methods to hide the q_len dimension,
|
|
# refer to attention forward function in modeling.
|
|
if q_len > 1:
|
|
q = q.transpose(1, 2).contiguous() # [bsz, q_len, num_heads, head_dim]
|
|
q = q.view(-1, q.size(-2), q.size(-1)) # [bsz * q_len, num_heads, head_dim]
|
|
else:
|
|
q = q.squeeze(2)
|
|
assert q.shape == (bsz * q_len, num_attn_heads, HEAD_DIM)
|
|
|
|
out_triton = flash_decoding_attention(
|
|
q,
|
|
k_cache,
|
|
v_cache,
|
|
kv_lengths,
|
|
block_tables,
|
|
block_size,
|
|
max_kv_len_in_b,
|
|
output,
|
|
mid_output,
|
|
mid_output_lse,
|
|
sm_scale=sm_scale,
|
|
kv_group_num=kv_group_num,
|
|
q_len=q_len,
|
|
) # [bsz * q_len, num_heads, head_dim]
|
|
|
|
assert out_torch.shape == out_triton.shape
|
|
assert torch.allclose(out_torch, out_triton, atol=1e-3, rtol=1e-4)
|
|
|
|
if __name__ == "__main__":
|
|
test_flash_decoding(16, 32, 32, 16, 1, True)
|