You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/tests/test_checkpoint_io/test_gemini_torch_compabili...

177 lines
6.9 KiB

import pytest
import torch
import torch.distributed as dist
from torch.optim import Adam
from utils import shared_tempdir
import colossalai
from colossalai.booster import Booster
from colossalai.booster.plugin import GeminiPlugin, TorchDDPPlugin
from colossalai.nn.optimizer import HybridAdam
from colossalai.testing import (
check_state_dict_equal,
clear_cache_before_run,
parameterize,
rerun_if_address_is_in_use,
spawn,
)
from tests.kit.model_zoo import model_zoo
@clear_cache_before_run()
@parameterize("shard", [False, True])
@parameterize("model_name", ["transformers_llama_for_casual_lm"])
def exam_torch_load_from_gemini(shard: bool, model_name: str):
(model_fn, data_gen_fn, output_transform_fn, _, _) = next(iter(model_zoo.get_sub_registry(model_name).values()))
criterion = lambda x: x.mean()
plugin = GeminiPlugin(precision="fp16", initial_scale=(2**14))
booster = Booster(plugin=plugin)
model = model_fn()
optimizer = HybridAdam(model.parameters(), lr=0.001)
model, optimizer, criterion, _, _ = booster.boost(model, optimizer, criterion)
data = data_gen_fn()
data = {k: v.to("cuda") if torch.is_tensor(v) or "Tensor" in v.__class__.__name__ else v for k, v in data.items()}
output = model(**data)
output = output_transform_fn(output)
output_key = list(output.keys())[0]
loss = criterion(output[output_key])
booster.backward(loss, optimizer)
optimizer.step()
with shared_tempdir() as tempdir:
model_ckpt_path = f"{tempdir}/model"
optimizer_ckpt_path = f"{tempdir}/optimizer"
booster.save_model(model, model_ckpt_path, shard=shard)
booster.save_optimizer(optimizer, optimizer_ckpt_path, shard=shard)
dist.barrier()
new_model = model_fn()
new_optimizer = Adam(new_model.parameters(), lr=0.001)
new_plugin = TorchDDPPlugin()
new_booster = Booster(plugin=new_plugin)
new_model, new_optimizer, criterion, _, _ = new_booster.boost(new_model, new_optimizer, criterion)
# Loading HybridAdam states to torch.Adam
new_booster.load_model(new_model, model_ckpt_path, strict=True)
# Add prefix to get aligned with pytorch parameter names.
check_state_dict_equal(
model.state_dict(only_rank_0=False, prefix="module.module."),
new_model.state_dict(),
False,
ignore_dtype=True,
)
new_booster.load_optimizer(new_optimizer, optimizer_ckpt_path)
check_state_dict_equal(optimizer.state_dict(only_rank_0=False), new_optimizer.state_dict(), False)
# Check the new model/optimizer can successfully run.
data = data_gen_fn()
data = {
k: v.to("cuda") if torch.is_tensor(v) or "Tensor" in v.__class__.__name__ else v for k, v in data.items()
}
output = new_model(**data)
output = output_transform_fn(output)
output_key = list(output.keys())[0]
loss = criterion(output[output_key])
new_booster.backward(loss, new_optimizer)
new_optimizer.step()
new_booster.save_model(new_model, model_ckpt_path, shard=shard)
new_booster.save_optimizer(new_optimizer, optimizer_ckpt_path, shard=shard)
@clear_cache_before_run()
@parameterize("shard", [False, True])
@parameterize("model_name", ["transformers_gpt"])
def exam_gemini_load_from_torch(shard: bool, model_name: str):
(model_fn, data_gen_fn, output_transform_fn, _, _) = next(iter(model_zoo.get_sub_registry(model_name).values()))
criterion = lambda x: x.mean()
plugin = TorchDDPPlugin()
booster = Booster(plugin=plugin)
model = model_fn()
optimizer = Adam(model.parameters(), lr=0.001)
model, optimizer, criterion, _, _ = booster.boost(model, optimizer, criterion)
data = data_gen_fn()
data = {k: v.to("cuda") if torch.is_tensor(v) or "Tensor" in v.__class__.__name__ else v for k, v in data.items()}
output = model(**data)
output = output_transform_fn(output)
output_key = list(output.keys())[0]
loss = criterion(output[output_key])
booster.backward(loss, optimizer)
optimizer.step()
with shared_tempdir() as tempdir:
model_ckpt_path = f"{tempdir}/model"
optimizer_ckpt_path = f"{tempdir}/optimizer"
booster.save_model(model, model_ckpt_path, shard=shard)
booster.save_optimizer(optimizer, optimizer_ckpt_path, shard=shard)
dist.barrier()
new_model = model_fn()
new_optimizer = HybridAdam(new_model.parameters(), lr=0.001)
new_plugin = GeminiPlugin()
new_booster = Booster(plugin=new_plugin)
new_model, new_optimizer, criterion, _, _ = new_booster.boost(new_model, new_optimizer, criterion)
# Loading torch.Adam states to HybridAdam
new_booster.load_model(new_model, model_ckpt_path, strict=True)
# Add prefix to get aligned with pytorch parameter names.
check_state_dict_equal(
new_model.state_dict(only_rank_0=False, prefix="module.module."),
model.state_dict(),
False,
ignore_dtype=True,
)
new_booster.load_optimizer(new_optimizer, optimizer_ckpt_path)
old_state_dict = optimizer.state_dict()
new_state_dict = new_optimizer.state_dict(only_rank_0=False)
# Comparison of param_groups needs special care here,
# since not all hyperparameters in Adam are used by HybridAdam
hyperparameters_to_examine = ["params", "lr", "betas", "eps", "weight_decay"]
for old_group, new_group in zip(old_state_dict["param_groups"], new_state_dict["param_groups"]):
for k in hyperparameters_to_examine:
assert (
k in old_group and k in new_group
), f"Old group's keys: {list(old_group.keys())}, New group's keys: {list(new_group.keys())}"
assert old_group[k] == new_group[k]
check_state_dict_equal(old_state_dict["state"], new_state_dict["state"], False)
# Check the new model/optimizer can successfully run.
data = data_gen_fn()
data = {
k: v.to("cuda") if torch.is_tensor(v) or "Tensor" in v.__class__.__name__ else v for k, v in data.items()
}
output = new_model(**data)
output = output_transform_fn(output)
output_key = list(output.keys())[0]
loss = criterion(output[output_key])
new_booster.backward(loss, new_optimizer)
new_optimizer.step()
new_booster.save_model(new_model, model_ckpt_path, shard=shard)
new_booster.save_optimizer(new_optimizer, optimizer_ckpt_path, shard=shard)
def run_dist(rank, world_size, port):
config = {}
colossalai.launch(config=config, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
exam_torch_load_from_gemini()
exam_gemini_load_from_torch()
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [2])
@rerun_if_address_is_in_use()
def test_gemini_ckpIO(world_size):
spawn(run_dist, world_size)