mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
175 lines
6.2 KiB
175 lines
6.2 KiB
from contextlib import nullcontext
|
|
from typing import Optional
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
|
|
import colossalai
|
|
from colossalai.booster import Booster
|
|
from colossalai.booster.plugin import GeminiPlugin
|
|
from colossalai.fx import is_compatible_with_meta
|
|
from colossalai.lazy.lazy_init import LazyInitContext
|
|
from colossalai.nn.optimizer import HybridAdam
|
|
from colossalai.tensor.colo_parameter import ColoParameter
|
|
from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn
|
|
from tests.kit.model_zoo import COMMON_MODELS, IS_FAST_TEST, model_zoo
|
|
|
|
|
|
@clear_cache_before_run()
|
|
def run_fn(init_method, model_fn, data_gen_fn, output_transform_fn, zero_size, tp_size) -> Optional[str]:
|
|
try:
|
|
if init_method == "lazy":
|
|
ctx = LazyInitContext()
|
|
else:
|
|
ctx = nullcontext()
|
|
extra_dp_size = dist.get_world_size() // (zero_size * tp_size)
|
|
enable_all_optimization = True if tp_size > 1 else False
|
|
plugin = GeminiPlugin(
|
|
max_norm=1.0,
|
|
initial_scale=2**5,
|
|
tp_size=tp_size,
|
|
extra_dp_size=extra_dp_size,
|
|
enable_all_optimization=enable_all_optimization,
|
|
)
|
|
booster = Booster(plugin=plugin)
|
|
with ctx:
|
|
model = model_fn()
|
|
optimizer = HybridAdam(model.parameters(), lr=1e-3)
|
|
criterion = lambda x: x.mean()
|
|
data = data_gen_fn()
|
|
|
|
data = {
|
|
k: v.to("cuda") if torch.is_tensor(v) or "Tensor" in v.__class__.__name__ else v for k, v in data.items()
|
|
}
|
|
|
|
model, optimizer, criterion, _, _ = booster.boost(model, optimizer, criterion)
|
|
|
|
for n, p in model.named_parameters():
|
|
assert isinstance(p, ColoParameter), f"{n} is not a ColoParameter"
|
|
|
|
output = model(**data)
|
|
output = output_transform_fn(output)
|
|
output_key = list(output.keys())[0]
|
|
loss = criterion(output[output_key])
|
|
|
|
booster.backward(loss, optimizer)
|
|
optimizer.step()
|
|
|
|
except NotImplementedError:
|
|
print(f"Tensor Parallelism policy for {model.__class__} is not implemented yet\n.")
|
|
except Exception as e:
|
|
# raise e
|
|
return repr(e)
|
|
|
|
|
|
# TODO(ver217): CI does not support lazy now
|
|
# @parameterize('init_method', ['lazy', 'none', 'colo'])
|
|
|
|
|
|
@parameterize("subset", [COMMON_MODELS] if IS_FAST_TEST else ["torchvision", "transformers", "diffusers"])
|
|
@parameterize("init_method", ["none"])
|
|
@parameterize("zero_size", [2])
|
|
@parameterize("tp_size", [2])
|
|
def check_gemini_plugin(
|
|
subset: str, init_method: str = "none", early_stop: bool = True, zero_size: int = 1, tp_size: int = 1
|
|
):
|
|
"""check gemini plugin over model zoo
|
|
|
|
Args:
|
|
early_stop (bool, optional): Whether to stop when getting the first error. Defaults to True.
|
|
"""
|
|
is_support_meta = is_compatible_with_meta()
|
|
if not is_support_meta and init_method == "lazy":
|
|
return
|
|
|
|
passed_models = []
|
|
failed_info = {} # (model_name, error) pair
|
|
|
|
for name, (model_fn, data_gen_fn, output_transform_fn, _, _) in model_zoo.get_sub_registry(subset).items():
|
|
# These models lead to CUDA error
|
|
if name in (
|
|
"diffusers_auto_encoder_kl",
|
|
"diffusers_vq_model",
|
|
"diffusers_unet2d_model",
|
|
"timm_resmlp",
|
|
"timm_gmixer_12_224",
|
|
"timm_gmlp_b16_224",
|
|
"timm_mixer_b16_224",
|
|
"timm_convnext",
|
|
"torchvision_convnext_base",
|
|
):
|
|
continue
|
|
# These models are not compatible with gemini
|
|
if name in [
|
|
"timm_convit",
|
|
"timm_dm_nfnet",
|
|
"torchvision_vit_b_16",
|
|
"transformers_t5",
|
|
"transformers_t5_for_conditional_generation",
|
|
"transformers_t5_encoder_model", # does not support apex rmsnorm
|
|
"transformers_chatglm",
|
|
"transformers_sam",
|
|
"transformers_vit",
|
|
"transformers_gpt_double_heads", # TODO check why does the model fail to run using Gemini
|
|
"transformers_falcon", # TODO check why falcon fails to run Gemini
|
|
"transformers_falcon_for_causal_lm",
|
|
"transformers_falcon_for_sequence_classification",
|
|
"transformers_falcon_for_token_classification",
|
|
"transformers_falcon_for_question_answering",
|
|
"transformers_gptj_lm", # lead to OOM when running in ci
|
|
"transformers_gptj_for_question_answering",
|
|
"transformers_gptj_for_sequence_classification",
|
|
]:
|
|
continue
|
|
|
|
if init_method == "lazy" and name in [
|
|
"timm_convmixer",
|
|
"timm_vision_transformer",
|
|
"timm_deit",
|
|
"timm_deit3",
|
|
"timm_inception_v3",
|
|
"timm_tnt_b_patch16_224",
|
|
"timm_rexnet",
|
|
"torchvision_densenet121",
|
|
"torchvision_efficientnet_b0",
|
|
"torchvision_mobilenet_v2",
|
|
"torchvision_mnasnet0_5",
|
|
"torchvision_regnet_x_16gf",
|
|
"torchvision_shufflenet_v2_x0_5",
|
|
"torchvision_efficientnet_v2_s",
|
|
]:
|
|
continue
|
|
|
|
# TODO debug blip2 when using tp, something wrong with shift_logits's shape
|
|
if "transformers_blip2" in name:
|
|
tp_size = 1
|
|
|
|
err = run_fn(init_method, model_fn, data_gen_fn, output_transform_fn, zero_size, tp_size)
|
|
if err is None:
|
|
passed_models.append(name)
|
|
else:
|
|
failed_info[name] = err
|
|
if early_stop:
|
|
break
|
|
|
|
if dist.get_rank() == 0:
|
|
print(f"Init method: {init_method}")
|
|
print(f"Passed models({len(passed_models)}): {passed_models}\n\n")
|
|
print(f"Failed models({len(failed_info)}): {list(failed_info.keys())}\n\n")
|
|
assert len(failed_info) == 0, "\n".join([f"{k}: {v}" for k, v in failed_info.items()])
|
|
|
|
|
|
def run_dist(rank, world_size, port, early_stop: bool = True):
|
|
# init dist env
|
|
colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host="localhost")
|
|
check_gemini_plugin(early_stop=early_stop)
|
|
|
|
|
|
@rerun_if_address_is_in_use()
|
|
def test_gemini_plugin(early_stop: bool = True):
|
|
spawn(run_dist, 4, early_stop=early_stop)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_gemini_plugin(early_stop=False)
|