You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/extensions/csrc/cuda/get_cos_and_sin_kernel.cu

216 lines
9.5 KiB

#include <ATen/cuda/CUDAContext.h>
#include <torch/extension.h>
#include "utils/vector_copy_utils.h"
#include "../common/micros.h"
#include "stdio.h"
template <typename scalar_t, bool Aligned, int VecSize>
__device__ void apply_cos_and_sin_memcopy(
scalar_t* __restrict__ cos,
scalar_t* __restrict__ sin,
const scalar_t* __restrict__ cos_cache_ptr,
const scalar_t* __restrict__ sin_cache_ptr,
const int* __restrict__ sequence_lengths,
const int head_dim,
const int dest_offset_id,
const int src_offset_id
) {
int begin_id = threadIdx.x * VecSize;
for (; begin_id <= head_dim - VecSize; begin_id += blockDim.x){
copy_vector<scalar_t, VecSize>(cos + dest_offset_id + begin_id, cos_cache_ptr + src_offset_id + begin_id);
copy_vector<scalar_t, VecSize>(sin + dest_offset_id + begin_id, sin_cache_ptr + src_offset_id + begin_id);
}
if (!Aligned) {
for (; begin_id < head_dim; ++begin_id ) {
cos[dest_offset_id + begin_id] = cos_cache_ptr[src_offset_id + begin_id];
sin[dest_offset_id + begin_id] = sin_cache_ptr[src_offset_id + begin_id];
}
}
}
template <typename scalar_t, bool Aligned, int VecSize>
__global__ void apply_get_context_cos_and_sin_kernel(
scalar_t* __restrict__ cos,
scalar_t* __restrict__ sin,
const scalar_t* __restrict__ cos_cache_ptr,
const scalar_t* __restrict__ sin_cache_ptr,
const int* __restrict__ sequence_lengths,
const int* __restrict__ cumsum_lengths,
const int batch_size,
const int head_dim
) {
int token_id = blockIdx.x;
if ( token_id >= sequence_lengths[blockIdx.y] ) {
return ;
}
int src_offset_id = token_id * head_dim;
int dest_offset_id = src_offset_id;
if (blockIdx.y > 0) {
dest_offset_id += cumsum_lengths[blockIdx.y - 1] * head_dim;
}
apply_cos_and_sin_memcopy<scalar_t, Aligned, VecSize>(
cos,
sin,
cos_cache_ptr,
sin_cache_ptr,
sequence_lengths,
head_dim,
dest_offset_id,
src_offset_id
);
}
template <typename scalar_t, bool Aligned, int VecSize>
__global__ void apply_get_decode_cos_and_sin_kernel(
scalar_t* __restrict__ cos,
scalar_t* __restrict__ sin,
const scalar_t* __restrict__ cos_cache_ptr,
const scalar_t* __restrict__ sin_cache_ptr,
const int* __restrict__ sequence_lengths,
const int batch_size,
const int head_dim
) {
int src_offset_id = ( sequence_lengths[blockIdx.y] - 1 ) * head_dim;
int dest_offset_id = blockIdx.y * head_dim;
apply_cos_and_sin_memcopy<scalar_t, Aligned, VecSize>(
cos,
sin,
cos_cache_ptr,
sin_cache_ptr,
sequence_lengths,
head_dim,
dest_offset_id,
src_offset_id
);
}
template<typename scalar_t>
void apply_get_cos_and_sin(
at::Tensor& cos_cache, // [max_rotary_position, head_dim]
at::Tensor& sin_cache, // [max_rotary_position, head_dim]
at::Tensor& cos, // [num_tokens, head_dim]
at::Tensor& sin, // [num_tokens, head_dim]
at::Tensor& sequence_lengths, // [batch_size]
int max_seq_len_in_batch,
bool is_prompts
) {
int token_num = cos.size(0);
int head_dim = cos.size(1);
int batch_size = sequence_lengths.size(0);
at::Tensor cumsum_lengths;
int vec_size = get_vec_size<scalar_t>(cos);
bool aligned = true;
if (head_dim % vec_size != 0) {
aligned = false;
}
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
int block_size_y;
int block_size_x;
if (is_prompts) {
block_size_y = batch_size;
block_size_x = max_seq_len_in_batch;
// TODO: The cumsum operation can be fused into get_cos_and_sin kernel later on.
cumsum_lengths = torch::cumsum(sequence_lengths, 0, torch::kInt32);
}
else{
block_size_y = batch_size;
block_size_x = 1;
}
int thread_nums = (head_dim + vec_size - 1) / vec_size;
dim3 grid(block_size_x, block_size_y);
dim3 block(std::min(thread_nums, 512));
#define GET_COS_AND_SIN_KERNEL_LAUNCH(__aligned, __vec_size) \
do { \
if (is_prompts){ \
apply_get_context_cos_and_sin_kernel<scalar_t, __aligned, __vec_size><<<grid, block, 0, stream>>>( \
cos.data_ptr<scalar_t>(), \
sin.data_ptr<scalar_t>(), \
cos_cache.data_ptr<scalar_t>(), \
sin_cache.data_ptr<scalar_t>(), \
sequence_lengths.data_ptr<int>(), \
cumsum_lengths.data_ptr<int>(), \
batch_size, \
head_dim \
); \
} \
else { \
apply_get_decode_cos_and_sin_kernel<scalar_t, __aligned, __vec_size><<<grid, block, 0, stream>>>( \
cos.data_ptr<scalar_t>(), \
sin.data_ptr<scalar_t>(), \
cos_cache.data_ptr<scalar_t>(), \
sin_cache.data_ptr<scalar_t>(), \
sequence_lengths.data_ptr<int>(), \
batch_size, \
head_dim \
); \
} \
} while(0)
#define GET_COS_AND_SIN_KERNEL_LAUNCH_VEC_SIZE_CASE(__aligned) \
do { \
switch (vec_size) { \
case 1: \
GET_COS_AND_SIN_KERNEL_LAUNCH(__aligned, 1); \
break; \
case 2: \
GET_COS_AND_SIN_KERNEL_LAUNCH(__aligned, 2); \
break; \
case 4: \
GET_COS_AND_SIN_KERNEL_LAUNCH(__aligned, 4); \
break; \
default: \
AT_ERROR("Unsupported vectorized size ", vec_size); \
break; \
} \
} while(0)
if (aligned) {
GET_COS_AND_SIN_KERNEL_LAUNCH_VEC_SIZE_CASE(true);
}
else {
GET_COS_AND_SIN_KERNEL_LAUNCH_VEC_SIZE_CASE(false);
}
AT_CUDA_CHECK(cudaGetLastError());
}
void get_cos_and_sin(
at::Tensor& cos_cache, // [max_rotary_position, head_dim]
at::Tensor& sin_cache, // [max_rotary_position, head_dim]
at::Tensor& cos, // [num_tokens, head_dim]
at::Tensor& sin, // [num_tokens, head_dim]
at::Tensor& sequence_lengths, // [batch_size]
int max_seq_len_in_batch,
bool is_prompts
) {
DISPATCH_FLOAT_HALF_AND_BFLOAT(
cos.scalar_type(),
"get_cos_and_sin",
apply_get_cos_and_sin<scalar_t>(
cos_cache,
sin_cache,
cos,
sin,
sequence_lengths,
max_seq_len_in_batch,
is_prompts
);)
}