mirror of https://github.com/hpcaitech/ColossalAI
482 lines
19 KiB
Plaintext
482 lines
19 KiB
Plaintext
// in transformers source code, huggingface uses fp16 to compute rope so we follow the same precision
|
|
#include <ATen/cuda/CUDAContext.h>
|
|
#include <torch/extension.h>
|
|
|
|
#include "utils/vector_copy_utils.h"
|
|
#include "../common/micros.h"
|
|
#include "../common/mp_type_traits.h"
|
|
|
|
template <typename scalar_t, typename m_scalar_t, int VecSize>
|
|
__device__ void apply_emb_rotary_compute(
|
|
scalar_t* __restrict__ src, const m_scalar_t* __restrict__ cos_ptr,
|
|
const m_scalar_t* __restrict__ sin_ptr, const int64_t stride,
|
|
const int token_id, const int shard_block_size, const int half_head_dim,
|
|
const int head_num, const int head_dim) {
|
|
scalar_t x[VecSize];
|
|
scalar_t y[VecSize];
|
|
scalar_t out_x[VecSize];
|
|
scalar_t out_y[VecSize];
|
|
|
|
for (int i = threadIdx.x * VecSize; i < head_num * half_head_dim;
|
|
i += blockDim.x * VecSize) {
|
|
const int head_offset = i % half_head_dim;
|
|
const int shard_offset =
|
|
(head_offset / shard_block_size) * shard_block_size +
|
|
(head_offset % shard_block_size) / VecSize;
|
|
const int64_t addr_offset =
|
|
token_id * stride + (i / half_head_dim) * head_dim + head_offset;
|
|
|
|
copy_vector<scalar_t, VecSize>(x, src + addr_offset);
|
|
copy_vector<scalar_t, VecSize>(y, src + addr_offset + half_head_dim);
|
|
|
|
#pragma unroll
|
|
for (int j = 0; j < VecSize; j++) {
|
|
out_x[j] = static_cast<scalar_t>(static_cast<m_scalar_t>(x[j]) * cos_ptr[j * 32 + shard_offset] -
|
|
static_cast<m_scalar_t>(y[j]) * sin_ptr[j * 32 + shard_offset]);
|
|
out_y[j] = static_cast<scalar_t>(static_cast<m_scalar_t>(y[j]) * cos_ptr[j * 32 + shard_offset] +
|
|
static_cast<m_scalar_t>(x[j]) * sin_ptr[j * 32 + shard_offset]);
|
|
}
|
|
|
|
copy_vector<scalar_t, VecSize>(src + addr_offset, out_x);
|
|
copy_vector<scalar_t, VecSize>(src + addr_offset + half_head_dim, out_y);
|
|
}
|
|
}
|
|
|
|
template <typename scalar_t, int VecSize>
|
|
__device__ void apply_kv_memcopy(
|
|
scalar_t* __restrict__ src, scalar_t* __restrict__ cache,
|
|
const int64_t stride, const int token_id, const int block_id,
|
|
const int hidden_size, const int block_size, const int block_offset,
|
|
const int head_dim, const int half_head_dim) {
|
|
for (int i = threadIdx.x * VecSize; i < hidden_size / 2;
|
|
i += blockDim.x * VecSize) {
|
|
const int head_id = i / half_head_dim;
|
|
const int head_offset = i % half_head_dim;
|
|
const int64_t src_id = token_id * stride + head_id * head_dim + head_offset;
|
|
const int64_t target_id = block_id * hidden_size * block_size +
|
|
head_id * block_size * head_dim +
|
|
block_offset * head_dim + head_offset;
|
|
|
|
copy_vector<scalar_t, VecSize>(cache + target_id, src + src_id);
|
|
copy_vector<scalar_t, VecSize>(cache + target_id + half_head_dim,
|
|
src + src_id + half_head_dim);
|
|
}
|
|
}
|
|
|
|
template <typename scalar_t, typename m_scalar_t, int VecSize>
|
|
__device__ void cos_sin_memory_access(
|
|
const scalar_t* __restrict__ cos, const scalar_t* __restrict__ sin,
|
|
m_scalar_t* cos_ptr, m_scalar_t* sin_ptr, const int token_id,
|
|
const int shard_block_size, const int cos_stride, const int sin_stride,
|
|
const int half_head_dim) {
|
|
for (int i = threadIdx.x; i < half_head_dim; i += blockDim.x) {
|
|
// We assume that the value of head_dim is less than 128*128.
|
|
const int shard_offset = (i % shard_block_size) / VecSize;
|
|
const int shard_head =
|
|
(i / shard_block_size) * shard_block_size + i % VecSize * 32;
|
|
cos_ptr[shard_head + shard_offset] = static_cast<m_scalar_t>(cos[token_id * cos_stride + i]);
|
|
sin_ptr[shard_head + shard_offset] = static_cast<m_scalar_t>(sin[token_id * sin_stride + i]);
|
|
}
|
|
}
|
|
|
|
template <typename scalar_t, typename m_scalar_t, int VecSize>
|
|
__device__ void apply_k_rotary_emb_compute(
|
|
scalar_t* __restrict__ key, scalar_t* __restrict__ value,
|
|
scalar_t* __restrict__ key_cache, scalar_t* __restrict__ value_cache,
|
|
const m_scalar_t* __restrict__ cos_ptr, const m_scalar_t* __restrict__ sin_ptr,
|
|
const int* __restrict__ sequence_lengths,
|
|
const int* __restrict__ block_tables, const int64_t key_stride,
|
|
const int64_t value_stride, const int token_id,
|
|
const int block_table_stride, const int head_num, const int head_dim,
|
|
const int kv_head_num, const int block_size, const int half_head_dim,
|
|
const int shard_block_size) {
|
|
const int seq_len = sequence_lengths[token_id] - 1;
|
|
const int block_offset = seq_len % block_size;
|
|
const int block_id =
|
|
block_tables[token_id * block_table_stride + seq_len / block_size];
|
|
|
|
if (block_id < 0) {
|
|
return;
|
|
}
|
|
|
|
scalar_t x[VecSize];
|
|
scalar_t y[VecSize];
|
|
scalar_t out_x[VecSize];
|
|
scalar_t out_y[VecSize];
|
|
|
|
for (int i = threadIdx.x * VecSize; i < kv_head_num * half_head_dim;
|
|
i += blockDim.x * VecSize) {
|
|
const int head_offset = i % half_head_dim;
|
|
const int shard_offset =
|
|
(head_offset / shard_block_size) * shard_block_size +
|
|
(head_offset % shard_block_size) / VecSize;
|
|
const int64_t addr_offset =
|
|
token_id * key_stride + (i / half_head_dim) * head_dim + head_offset;
|
|
const int64_t target_id = block_id * head_num * head_dim * block_size +
|
|
(i / half_head_dim) * block_size * head_dim +
|
|
block_offset * head_dim + head_offset;
|
|
|
|
copy_vector<scalar_t, VecSize>(x, key + addr_offset);
|
|
copy_vector<scalar_t, VecSize>(y, key + addr_offset + half_head_dim);
|
|
|
|
#pragma unroll
|
|
for (int j = 0; j < VecSize; j++) {
|
|
out_x[j] = static_cast<scalar_t>(static_cast<m_scalar_t>(x[j]) * cos_ptr[j * 32 + shard_offset] -
|
|
static_cast<m_scalar_t>(y[j]) * sin_ptr[j * 32 + shard_offset]);
|
|
out_y[j] = static_cast<scalar_t>(static_cast<m_scalar_t>(y[j]) * cos_ptr[j * 32 + shard_offset] +
|
|
static_cast<m_scalar_t>(x[j]) * sin_ptr[j * 32 + shard_offset]);
|
|
}
|
|
|
|
copy_vector<scalar_t, VecSize>(key_cache + target_id, out_x);
|
|
copy_vector<scalar_t, VecSize>(key_cache + target_id + half_head_dim,
|
|
out_y);
|
|
}
|
|
|
|
// apply value memcopy
|
|
apply_kv_memcopy<scalar_t, VecSize>(
|
|
value, value_cache, value_stride, token_id, block_id, head_num * head_dim,
|
|
block_size, block_offset, head_dim, half_head_dim);
|
|
}
|
|
|
|
template<typename scalar_t, typename m_scalar_t, int VecSize>
|
|
__global__ void rotary_embedding_and_cache_copy_kernel(
|
|
scalar_t* __restrict__ query,
|
|
scalar_t* __restrict__ key,
|
|
scalar_t* __restrict__ value,
|
|
const scalar_t* __restrict__ cos,
|
|
const scalar_t* __restrict__ sin,
|
|
scalar_t* __restrict__ key_cache,
|
|
scalar_t* __restrict__ value_cache,
|
|
const int* __restrict__ sequence_lengths,
|
|
const int* __restrict__ block_tables,
|
|
const int64_t query_stride,
|
|
const int64_t key_stride,
|
|
const int64_t value_stride,
|
|
const int64_t half_shard_element_num,
|
|
const int cos_stride,
|
|
const int sin_stride,
|
|
const int block_table_stride,
|
|
const int head_num,
|
|
const int head_dim,
|
|
const int kv_head_num,
|
|
const int block_size
|
|
) {
|
|
|
|
const int token_id = blockIdx.x;
|
|
const int half_head_dim = head_dim / 2;
|
|
const int shard_block_size = VecSize * 32;
|
|
|
|
extern __shared__ char shard_ptr[];
|
|
|
|
m_scalar_t *cos_ptr = (m_scalar_t*)shard_ptr;
|
|
m_scalar_t *sin_ptr = cos_ptr + half_shard_element_num;
|
|
|
|
// apply cos_sin memcopy
|
|
cos_sin_memory_access<scalar_t, m_scalar_t, VecSize>(cos, sin, cos_ptr, sin_ptr, token_id, shard_block_size, cos_stride, sin_stride, half_head_dim);
|
|
__syncthreads();
|
|
|
|
//compute query
|
|
apply_emb_rotary_compute<scalar_t, m_scalar_t, VecSize>(query, cos_ptr, sin_ptr, query_stride, token_id, shard_block_size, half_head_dim, head_num, head_dim);
|
|
|
|
//compute key and copy kv
|
|
apply_k_rotary_emb_compute<scalar_t, m_scalar_t, VecSize>(key, value, key_cache, value_cache, cos_ptr, sin_ptr, sequence_lengths, block_tables, key_stride, value_stride, token_id, block_table_stride, head_num, head_dim, kv_head_num, block_size, half_head_dim, shard_block_size);
|
|
}
|
|
|
|
template<typename scalar_t, typename m_scalar_t, int VecSize>
|
|
__global__ void rotary_embedding_kernel(
|
|
scalar_t* __restrict__ query,
|
|
scalar_t* __restrict__ key,
|
|
const scalar_t* __restrict__ cos,
|
|
const scalar_t* __restrict__ sin,
|
|
const int64_t query_stride,
|
|
const int64_t key_stride,
|
|
const int64_t half_shard_element_num,
|
|
const int cos_stride,
|
|
const int sin_stride,
|
|
const int head_num,
|
|
const int head_dim,
|
|
const int kv_head_num
|
|
) {
|
|
const int token_id = blockIdx.x;
|
|
const int half_head_dim = head_dim / 2;
|
|
const int shard_block_size = VecSize * 32;
|
|
|
|
extern __shared__ char shard_ptr[];
|
|
|
|
m_scalar_t *cos_ptr = (m_scalar_t*)shard_ptr;
|
|
m_scalar_t *sin_ptr = cos_ptr + half_shard_element_num;
|
|
|
|
// apply cos_sin memcopy
|
|
cos_sin_memory_access<scalar_t, m_scalar_t, VecSize>(cos, sin, cos_ptr, sin_ptr, token_id, shard_block_size, cos_stride, sin_stride, half_head_dim);
|
|
__syncthreads();
|
|
|
|
//compute query
|
|
apply_emb_rotary_compute<scalar_t, m_scalar_t, VecSize>(query, cos_ptr, sin_ptr, query_stride, token_id, shard_block_size, half_head_dim, head_num, head_dim);
|
|
|
|
//compute key
|
|
apply_emb_rotary_compute<scalar_t, m_scalar_t, VecSize>(key, cos_ptr, sin_ptr, key_stride, token_id, shard_block_size, half_head_dim, kv_head_num, head_dim);
|
|
}
|
|
|
|
template<typename scalar_t, bool high_precision>
|
|
void apply_rotary_embedding_and_cache_copy(
|
|
at::Tensor& query, // [num_tokens, head_num, head_dim]
|
|
at::Tensor& key, // [num_tokens, kv_head_num, head_dim]
|
|
at::Tensor& value, // [num_tokens, kv_head_num, head_dim]
|
|
at::Tensor& cos, // [num_tokens, head_dim]
|
|
at::Tensor& sin, // [num_tokens, head_dim]
|
|
at::Tensor& key_cache, // [num_blocks, head_num, block_size, head_dim]
|
|
at::Tensor& value_cache, // [num_blocks, head_num, block_size, head_dim]
|
|
at::Tensor& sequence_lengths, // [batch_size]
|
|
at::Tensor& block_tables) // [batch_size, max_seq_len]
|
|
{
|
|
int num_tokens = query.size(0);
|
|
int head_num = query.size(1);
|
|
int head_dim = query.size(2);
|
|
int kv_head_num = key.size(1);
|
|
int block_size = key_cache.size(2);
|
|
|
|
int64_t query_stride = query.stride(0);
|
|
int64_t key_stride = key.stride(0);
|
|
int64_t value_stride = value.stride(0);
|
|
int cos_stride = cos.stride(0);
|
|
int sin_stride = sin.stride(0);
|
|
int block_table_stride = block_tables.stride(0);
|
|
|
|
using m_scalar_t = typename colossalAI::common::ScalarTypeTrait<high_precision, scalar_t>::Type;
|
|
|
|
int vec_size = get_vec_size<scalar_t>(query);
|
|
|
|
if ((head_dim / 2) % vec_size != 0) {
|
|
// Disable vectorized loading optimization when head_dim is not divisible by VecSize.
|
|
vec_size = 1;
|
|
}
|
|
|
|
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
|
|
|
int thread_nums = head_num * head_dim / vec_size / 2;
|
|
const int shard_block_size = vec_size * 32 * 2;
|
|
|
|
dim3 grid(num_tokens);
|
|
dim3 block(std::min(thread_nums, 512));
|
|
int64_t shard_element_num = ((head_dim + shard_block_size - 1) / shard_block_size) * shard_block_size ;
|
|
|
|
switch (vec_size) {
|
|
case 1:
|
|
rotary_embedding_and_cache_copy_kernel<scalar_t, m_scalar_t, 1><<<grid, block, shard_element_num * sizeof(m_scalar_t), stream>>>(
|
|
query.data_ptr<scalar_t>(),
|
|
key.data_ptr<scalar_t>(),
|
|
value.data_ptr<scalar_t>(),
|
|
cos.data_ptr<scalar_t>(),
|
|
sin.data_ptr<scalar_t>(),
|
|
key_cache.data_ptr<scalar_t>(),
|
|
value_cache.data_ptr<scalar_t>(),
|
|
sequence_lengths.data_ptr<int>(),
|
|
block_tables.data_ptr<int>(),
|
|
query_stride,
|
|
key_stride,
|
|
value_stride,
|
|
shard_element_num / 2,
|
|
cos_stride,
|
|
sin_stride,
|
|
block_table_stride,
|
|
head_num,
|
|
head_dim,
|
|
kv_head_num,
|
|
block_size
|
|
);
|
|
break;
|
|
case 2:
|
|
rotary_embedding_and_cache_copy_kernel<scalar_t, m_scalar_t, 2><<<grid, block, shard_element_num * sizeof(m_scalar_t), stream>>>(
|
|
query.data_ptr<scalar_t>(),
|
|
key.data_ptr<scalar_t>(),
|
|
value.data_ptr<scalar_t>(),
|
|
cos.data_ptr<scalar_t>(),
|
|
sin.data_ptr<scalar_t>(),
|
|
key_cache.data_ptr<scalar_t>(),
|
|
value_cache.data_ptr<scalar_t>(),
|
|
sequence_lengths.data_ptr<int>(),
|
|
block_tables.data_ptr<int>(),
|
|
query_stride,
|
|
key_stride,
|
|
value_stride,
|
|
shard_element_num / 2,
|
|
cos_stride,
|
|
sin_stride,
|
|
block_table_stride,
|
|
head_num,
|
|
head_dim,
|
|
kv_head_num,
|
|
block_size
|
|
);
|
|
break;
|
|
case 4:
|
|
rotary_embedding_and_cache_copy_kernel<scalar_t, m_scalar_t, 4><<<grid, block, shard_element_num * sizeof(m_scalar_t), stream>>>(
|
|
query.data_ptr<scalar_t>(),
|
|
key.data_ptr<scalar_t>(),
|
|
value.data_ptr<scalar_t>(),
|
|
cos.data_ptr<scalar_t>(),
|
|
sin.data_ptr<scalar_t>(),
|
|
key_cache.data_ptr<scalar_t>(),
|
|
value_cache.data_ptr<scalar_t>(),
|
|
sequence_lengths.data_ptr<int>(),
|
|
block_tables.data_ptr<int>(),
|
|
query_stride,
|
|
key_stride,
|
|
value_stride,
|
|
shard_element_num / 2,
|
|
cos_stride,
|
|
sin_stride,
|
|
block_table_stride,
|
|
head_num,
|
|
head_dim,
|
|
kv_head_num,
|
|
block_size
|
|
);
|
|
break;
|
|
default:
|
|
AT_ERROR("Unsupported vectorized size ", vec_size);
|
|
break;
|
|
}
|
|
|
|
AT_CUDA_CHECK(cudaGetLastError());
|
|
}
|
|
|
|
template<typename scalar_t, bool high_precision>
|
|
void apply_rotary_embedding(
|
|
at::Tensor& query, // [total_tokens, head_num, head_dim]
|
|
at::Tensor& key, // [total_tokens, kv_head_num, head_dim]
|
|
at::Tensor& cos, // [total_tokens, head_dim]
|
|
at::Tensor& sin // [total_tokens, head_dim]
|
|
){
|
|
int num_tokens = query.size(0);
|
|
int head_num = query.size(1);
|
|
int head_dim = query.size(2);
|
|
int kv_head_num = key.size(1);
|
|
|
|
int query_stride = query.stride(0);
|
|
int key_stride = key.stride(0);
|
|
int cos_stride = cos.stride(0);
|
|
int sin_stride = sin.stride(0);
|
|
|
|
using m_scalar_t = typename colossalAI::common::ScalarTypeTrait<high_precision, scalar_t>::Type;
|
|
|
|
int vec_size = get_vec_size<scalar_t>(query);
|
|
|
|
if ((head_dim / 2) % vec_size != 0) {
|
|
// Disable vectorized loading optimization when head_dim is not divisible by VecSize.
|
|
vec_size = 1;
|
|
}
|
|
|
|
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
|
|
|
int thread_nums = head_num * head_dim / vec_size / 2;
|
|
const int shard_block_size = vec_size * 32 * 2;
|
|
|
|
dim3 grid(num_tokens);
|
|
dim3 block(std::min(thread_nums, 512));
|
|
int64_t shard_element_num = ((head_dim + shard_block_size - 1) / shard_block_size) * shard_block_size ;
|
|
|
|
switch (vec_size) {
|
|
case 1:
|
|
rotary_embedding_kernel<scalar_t, m_scalar_t, 1><<<grid, block, shard_element_num * sizeof(m_scalar_t), stream>>>(
|
|
query.data_ptr<scalar_t>(),
|
|
key.data_ptr<scalar_t>(),
|
|
cos.data_ptr<scalar_t>(),
|
|
sin.data_ptr<scalar_t>(),
|
|
query_stride,
|
|
key_stride,
|
|
shard_element_num / 2,
|
|
cos_stride,
|
|
sin_stride,
|
|
head_num,
|
|
head_dim,
|
|
kv_head_num
|
|
);
|
|
break;
|
|
case 2:
|
|
rotary_embedding_kernel<scalar_t, m_scalar_t, 2><<<grid, block, shard_element_num * sizeof(m_scalar_t), stream>>>(
|
|
query.data_ptr<scalar_t>(),
|
|
key.data_ptr<scalar_t>(),
|
|
cos.data_ptr<scalar_t>(),
|
|
sin.data_ptr<scalar_t>(),
|
|
query_stride,
|
|
key_stride,
|
|
shard_element_num / 2,
|
|
cos_stride,
|
|
sin_stride,
|
|
head_num,
|
|
head_dim,
|
|
kv_head_num
|
|
);
|
|
break;
|
|
case 4:
|
|
rotary_embedding_kernel<scalar_t, m_scalar_t, 4><<<grid, block, shard_element_num * sizeof(m_scalar_t), stream>>>(
|
|
query.data_ptr<scalar_t>(),
|
|
key.data_ptr<scalar_t>(),
|
|
cos.data_ptr<scalar_t>(),
|
|
sin.data_ptr<scalar_t>(),
|
|
query_stride,
|
|
key_stride,
|
|
shard_element_num / 2,
|
|
cos_stride,
|
|
sin_stride,
|
|
head_num,
|
|
head_dim,
|
|
kv_head_num
|
|
);
|
|
break;
|
|
default:
|
|
AT_ERROR("Unsupported vectorized size ", vec_size);
|
|
break;
|
|
}
|
|
AT_CUDA_CHECK(cudaGetLastError());
|
|
}
|
|
|
|
void rotary_embedding_and_cache_copy(
|
|
at::Tensor& query, // [num_tokens, head_num, head_dim]
|
|
at::Tensor& key, // [num_tokens, kv_head_num, head_dim]
|
|
at::Tensor& value, // [num_tokens, kv_head_num, head_dim]
|
|
at::Tensor& cos, // [num_tokens, head_dim]
|
|
at::Tensor& sin, // [num_tokens, head_dim]
|
|
at::Tensor& key_cache, // [num_blocks, head_num, block_size, head_dim]
|
|
at::Tensor& value_cache, // [num_blocks, head_num, block_size, head_dim]
|
|
at::Tensor& sequence_lengths, // [batch_size]
|
|
at::Tensor& block_tables, // [batch_size, max_seq_len]
|
|
bool high_precision)
|
|
{
|
|
DISPATCH_FLOAT_HALF_AND_BFLOAT_WITH_HIGH_PRECISION(
|
|
high_precision,
|
|
query.scalar_type(),
|
|
"rotary_embedding_and_cache_copy",
|
|
apply_rotary_embedding_and_cache_copy<scalar_t, high_precision>(
|
|
query,
|
|
key,
|
|
value,
|
|
cos,
|
|
sin,
|
|
key_cache,
|
|
value_cache,
|
|
sequence_lengths,
|
|
block_tables
|
|
);)
|
|
}
|
|
|
|
void rotary_embedding(
|
|
at::Tensor& query, // [total_tokens, head_num, head_dim]
|
|
at::Tensor& key, // [total_tokens, kv_head_num, head_dim]
|
|
at::Tensor& cos, // [total_tokens, head_dim]
|
|
at::Tensor& sin, // [total_tokens, head_dim]
|
|
bool high_precision
|
|
){
|
|
DISPATCH_FLOAT_HALF_AND_BFLOAT_WITH_HIGH_PRECISION(
|
|
high_precision,
|
|
query.scalar_type(),
|
|
"rotary_embedding",
|
|
apply_rotary_embedding<scalar_t, high_precision>(
|
|
query,
|
|
key,
|
|
cos,
|
|
sin
|
|
);)
|
|
}
|