mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
558 lines
22 KiB
558 lines
22 KiB
from functools import partial
|
|
from typing import Callable, Dict, List, Optional, Union
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch import Tensor
|
|
from torch.nn import CrossEntropyLoss, Module
|
|
from transformers.models.mixtral.modeling_mixtral import (
|
|
MixtralDecoderLayer,
|
|
MixtralForCausalLM,
|
|
MixtralModel,
|
|
MoeCausalLMOutputWithPast,
|
|
_prepare_4d_causal_attention_mask,
|
|
load_balancing_loss_func,
|
|
)
|
|
from transformers.utils import logging
|
|
|
|
from colossalai.pipeline.stage_manager import PipelineStageManager
|
|
from colossalai.shardformer.layer import FusedRMSNorm, Linear1D_Col
|
|
from colossalai.shardformer.policies.base_policy import ModulePolicyDescription, Policy, SubModuleReplacementDescription
|
|
from colossalai.shardformer.shard import ShardConfig
|
|
|
|
from .mixtral_layer import EPMixtralSparseMoeBlock
|
|
|
|
__all__ = ["MixtralPolicy", "MixtralForCausalLMPolicy"]
|
|
|
|
|
|
class MixtralPolicy(Policy):
|
|
def config_sanity_check(self):
|
|
pass
|
|
|
|
def preprocess(self):
|
|
if self.shard_config.enable_tensor_parallelism:
|
|
# Resize embedding
|
|
vocab_size = self.model.config.vocab_size
|
|
world_size = self.shard_config.tensor_parallel_size
|
|
|
|
if vocab_size % world_size != 0:
|
|
new_vocab_size = vocab_size + world_size - vocab_size % world_size
|
|
self.model.resize_token_embeddings(new_vocab_size)
|
|
|
|
return self.model
|
|
|
|
def module_policy(self) -> Dict[Union[str, nn.Module], ModulePolicyDescription]:
|
|
policy = {}
|
|
|
|
if self.shard_config.enable_sequence_parallelism:
|
|
self.shard_config.enable_sequence_parallelism = False
|
|
raise NotImplementedError(
|
|
"Mixtral dosen't support sequence parallelism now, will ignore the sequence parallelism flag."
|
|
)
|
|
|
|
if self.shard_config.enable_tensor_parallelism:
|
|
raise NotImplementedError("Tensor parallelism is not supported for Mixtral model now.")
|
|
|
|
# expert parallel
|
|
self.append_or_create_submodule_replacement(
|
|
description=[
|
|
SubModuleReplacementDescription(
|
|
suffix="block_sparse_moe",
|
|
target_module=EPMixtralSparseMoeBlock,
|
|
)
|
|
],
|
|
policy=policy,
|
|
target_key=MixtralDecoderLayer,
|
|
)
|
|
|
|
# optimization configuration
|
|
if self.shard_config.enable_fused_normalization:
|
|
self.append_or_create_submodule_replacement(
|
|
description=[
|
|
SubModuleReplacementDescription(
|
|
suffix="input_layernorm",
|
|
target_module=FusedRMSNorm,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="post_attention_layernorm",
|
|
target_module=FusedRMSNorm,
|
|
),
|
|
],
|
|
policy=policy,
|
|
target_key=MixtralDecoderLayer,
|
|
)
|
|
|
|
self.append_or_create_submodule_replacement(
|
|
description=SubModuleReplacementDescription(
|
|
suffix="norm",
|
|
target_module=FusedRMSNorm,
|
|
),
|
|
policy=policy,
|
|
target_key=MixtralModel,
|
|
)
|
|
|
|
if self.shard_config.enable_flash_attention:
|
|
raise NotImplementedError("Flash attention has already been replaced in mixtral.")
|
|
|
|
return policy
|
|
|
|
def postprocess(self):
|
|
return self.model
|
|
|
|
def set_pipeline_forward(self, model_cls: nn.Module, new_forward: Callable, policy: Dict) -> None:
|
|
"""If under pipeline parallel setting, replacing the original forward method of huggingface
|
|
to customized forward method, and add this changing to policy."""
|
|
if self.pipeline_stage_manager:
|
|
stage_manager = self.pipeline_stage_manager
|
|
if self.model.__class__.__name__ == "MixtralModel":
|
|
module = self.model
|
|
else:
|
|
module = self.model.model
|
|
|
|
layers_per_stage = stage_manager.distribute_layers(len(module.layers))
|
|
stage_index = stage_manager.get_stage_index(layers_per_stage)
|
|
method_replacement = {"forward": partial(new_forward, stage_manager=stage_manager, stage_index=stage_index)}
|
|
self.append_or_create_method_replacement(
|
|
description=method_replacement, policy=policy, target_key=model_cls
|
|
)
|
|
|
|
return
|
|
|
|
def get_held_layers(self) -> List[Module]:
|
|
"""Get pipeline layers for current stage."""
|
|
assert self.pipeline_stage_manager is not None
|
|
|
|
if self.model.__class__.__name__ == "MixtralModel":
|
|
module = self.model
|
|
else:
|
|
module = self.model.model
|
|
stage_manager = self.pipeline_stage_manager
|
|
|
|
held_layers = []
|
|
layers_per_stage = stage_manager.distribute_layers(len(module.layers))
|
|
if stage_manager.is_first_stage():
|
|
held_layers.append(module.embed_tokens)
|
|
start_idx, end_idx = stage_manager.get_stage_index(layers_per_stage)
|
|
held_layers.extend(module.layers[start_idx:end_idx])
|
|
if stage_manager.is_last_stage():
|
|
held_layers.append(module.norm)
|
|
|
|
return held_layers
|
|
|
|
|
|
class MixtralModelPolicy(MixtralPolicy):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
def module_policy(self):
|
|
policy = super().module_policy()
|
|
if self.pipeline_stage_manager:
|
|
# set None as default
|
|
self.set_pipeline_forward(
|
|
model_cls=MixtralModel,
|
|
new_forward=MixtralPipelineForwards.mixtral_model_forward,
|
|
policy=policy,
|
|
)
|
|
return policy
|
|
|
|
def get_held_layers(self) -> List[Module]:
|
|
"""Get pipeline layers for current stage."""
|
|
held_layers = super().get_held_layers()
|
|
return held_layers
|
|
|
|
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
|
"""No shared params in llama model"""
|
|
return []
|
|
|
|
|
|
class MixtralForCausalLMPolicy(MixtralPolicy):
|
|
def module_policy(self):
|
|
policy = super().module_policy()
|
|
|
|
if self.shard_config.enable_tensor_parallelism:
|
|
# add a new item for casual lm
|
|
new_item = {
|
|
MixtralForCausalLM: ModulePolicyDescription(
|
|
sub_module_replacement=[
|
|
SubModuleReplacementDescription(
|
|
suffix="lm_head",
|
|
target_module=Linear1D_Col,
|
|
kwargs=dict(gather_output=True),
|
|
)
|
|
]
|
|
)
|
|
}
|
|
policy.update(new_item)
|
|
|
|
if self.pipeline_stage_manager:
|
|
# set None as default
|
|
self.set_pipeline_forward(
|
|
model_cls=MixtralForCausalLM,
|
|
new_forward=MixtralPipelineForwards.mixtral_for_causal_lm_forward,
|
|
policy=policy,
|
|
)
|
|
|
|
return policy
|
|
|
|
def get_held_layers(self) -> List[Module]:
|
|
"""Get pipeline layers for current stage."""
|
|
stage_manager = self.pipeline_stage_manager
|
|
held_layers = super().get_held_layers()
|
|
if stage_manager.is_last_stage():
|
|
held_layers.append(self.model.lm_head)
|
|
return held_layers
|
|
|
|
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
|
llama_model = self.model.model
|
|
if self.pipeline_stage_manager and self.pipeline_stage_manager.num_stages > 1:
|
|
if (
|
|
id(llama_model.embed_tokens.weight) == id(self.model.lm_head.weight)
|
|
and self.pipeline_stage_manager.num_stages > 1
|
|
):
|
|
# tie weights
|
|
return [
|
|
{
|
|
0: llama_model.embed_tokens.weight,
|
|
self.pipeline_stage_manager.num_stages - 1: self.model.lm_head.weight,
|
|
}
|
|
]
|
|
return []
|
|
|
|
|
|
class MixtralPipelineForwards:
|
|
"""
|
|
This class serves as a micro library for forward function substitution of Llama models
|
|
under pipeline setting.
|
|
"""
|
|
|
|
@staticmethod
|
|
def mixtral_model_forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
output_router_logits: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
stage_manager: Optional[PipelineStageManager] = None,
|
|
hidden_states: Optional[torch.FloatTensor] = None,
|
|
past_router_logits: Optional[torch.FloatTensor] = None,
|
|
stage_index: Optional[List[int]] = None,
|
|
shard_config: ShardConfig = None,
|
|
):
|
|
r"""
|
|
Args:
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
|
|
Returns:
|
|
|
|
Example:
|
|
|
|
```python
|
|
>>> from transformers import AutoTokenizer, MixtralForCausalLM
|
|
|
|
>>> model = MixtralForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
|
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
|
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
|
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
|
|
>>> # Generate
|
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
|
```"""
|
|
logger = logging.get_logger(__name__)
|
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_router_logits = (
|
|
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
|
)
|
|
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
# retrieve input_ids and inputs_embeds
|
|
if stage_manager.is_first_stage():
|
|
# retrieve input_ids and inputs_embeds
|
|
if input_ids is not None and inputs_embeds is not None:
|
|
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
|
elif input_ids is not None:
|
|
batch_size, seq_length = input_ids.shape
|
|
elif inputs_embeds is not None:
|
|
batch_size, seq_length, _ = inputs_embeds.shape
|
|
else:
|
|
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.embed_tokens(input_ids)
|
|
hidden_states = inputs_embeds
|
|
else:
|
|
input_shape = hidden_states.shape[:-1]
|
|
batch_size, seq_length = input_shape
|
|
device = hidden_states.device
|
|
|
|
seq_length_with_past = seq_length
|
|
past_key_values_length = 0
|
|
|
|
# TODO(jianghai): left the recording kv-value tensors as () or None type, this feature may be added in the future.
|
|
if output_attentions:
|
|
logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.")
|
|
output_attentions = False
|
|
if output_hidden_states:
|
|
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.")
|
|
output_hidden_states = False
|
|
if use_cache:
|
|
logger.warning_once("use_cache=True is not supported for pipeline models at the moment.")
|
|
use_cache = False
|
|
|
|
if past_key_values is not None:
|
|
past_key_values_length = past_key_values[0][0].shape[2]
|
|
seq_length_with_past = seq_length_with_past + past_key_values_length
|
|
|
|
if position_ids is None:
|
|
position_ids = torch.arange(
|
|
past_key_values_length,
|
|
seq_length + past_key_values_length,
|
|
dtype=torch.long,
|
|
device=device,
|
|
)
|
|
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
|
else:
|
|
position_ids = position_ids.view(-1, seq_length).long()
|
|
|
|
# embed positions, for the first stage, hidden_states is the input embeddings,
|
|
# for the other stages, hidden_states is the output of the previous stage
|
|
if self._use_flash_attention_2:
|
|
# 2d mask is passed through the layers
|
|
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
|
else:
|
|
# 4d mask is passed through the layers
|
|
attention_mask = _prepare_4d_causal_attention_mask(
|
|
attention_mask,
|
|
(batch_size, seq_length),
|
|
hidden_states,
|
|
past_key_values_length,
|
|
sliding_window=self.config.sliding_window,
|
|
)
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
if use_cache:
|
|
logger.warning_once(
|
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
|
)
|
|
use_cache = False
|
|
|
|
# decoder layers
|
|
all_hidden_states = () if output_hidden_states else None
|
|
all_self_attns = () if output_attentions else None
|
|
all_router_logits = () if output_router_logits else None
|
|
next_decoder_cache = None
|
|
|
|
start_idx, end_idx = stage_index[0], stage_index[1]
|
|
for idx, decoder_layer in enumerate(self.layers[start_idx:end_idx], start=start_idx):
|
|
if output_hidden_states:
|
|
all_hidden_states += (hidden_states,)
|
|
|
|
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
|
|
def create_custom_forward(module):
|
|
def custom_forward(*inputs):
|
|
# None for past_key_value
|
|
return module(*inputs)
|
|
|
|
return custom_forward
|
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint(
|
|
create_custom_forward(decoder_layer),
|
|
hidden_states,
|
|
attention_mask,
|
|
position_ids,
|
|
None,
|
|
output_attentions,
|
|
output_router_logits,
|
|
)
|
|
else:
|
|
layer_outputs = decoder_layer(
|
|
hidden_states,
|
|
attention_mask,
|
|
position_ids,
|
|
past_key_value,
|
|
output_attentions,
|
|
output_router_logits,
|
|
use_cache,
|
|
)
|
|
|
|
hidden_states = layer_outputs[0]
|
|
|
|
if use_cache:
|
|
next_decoder_cache = (layer_outputs[2 if output_attentions else 1],)
|
|
if output_attentions:
|
|
all_self_attns += (layer_outputs[1],)
|
|
if output_router_logits:
|
|
all_router_logits += (layer_outputs[-1],)
|
|
|
|
if stage_manager.is_last_stage():
|
|
hidden_states = self.norm(hidden_states)
|
|
|
|
# add hidden states from the last decoder layer
|
|
if output_hidden_states:
|
|
all_hidden_states += (hidden_states,)
|
|
next_cache = next_decoder_cache if use_cache else None
|
|
|
|
if output_router_logits and past_router_logits is not None:
|
|
all_router_logits = past_router_logits + all_router_logits
|
|
if stage_manager.is_last_stage():
|
|
return tuple(
|
|
v
|
|
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits]
|
|
if v is not None
|
|
)
|
|
# always return dict for imediate stage
|
|
return {
|
|
"hidden_states": hidden_states,
|
|
"past_router_logits": all_router_logits,
|
|
}
|
|
|
|
@staticmethod
|
|
def mixtral_for_causal_lm_forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
output_router_logits: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
stage_manager: Optional[PipelineStageManager] = None,
|
|
hidden_states: Optional[torch.FloatTensor] = None,
|
|
past_router_logits: Optional[torch.FloatTensor] = None,
|
|
stage_index: Optional[List[int]] = None,
|
|
shard_config: ShardConfig = None,
|
|
):
|
|
r"""
|
|
Args:
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
|
|
Returns:
|
|
|
|
Example:
|
|
|
|
```python
|
|
>>> from transformers import AutoTokenizer, MixtralForCausalLM
|
|
|
|
>>> model = MixtralForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
|
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
|
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
|
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
|
|
>>> # Generate
|
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
|
```"""
|
|
logger = logging.get_logger(__name__)
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_router_logits = (
|
|
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
|
)
|
|
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
# TODO(jianghai): left the recording kv-value tensors as () or None type, this feature may be added in the future.
|
|
if output_attentions:
|
|
logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.")
|
|
output_attentions = False
|
|
if output_hidden_states:
|
|
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.")
|
|
output_hidden_states = False
|
|
|
|
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
outputs = MixtralPipelineForwards.mixtral_model_forward(
|
|
self.model,
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
output_router_logits=output_router_logits,
|
|
return_dict=return_dict,
|
|
stage_manager=stage_manager,
|
|
hidden_states=hidden_states,
|
|
stage_index=stage_index,
|
|
past_router_logits=past_router_logits,
|
|
)
|
|
past_key_values = None
|
|
|
|
if stage_manager.is_last_stage():
|
|
hidden_states = outputs[0]
|
|
logits = self.lm_head(hidden_states)
|
|
logits = logits.float()
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
# Shift so that tokens < n predict n
|
|
shift_logits = logits[..., :-1, :].contiguous()
|
|
shift_labels = labels[..., 1:].contiguous()
|
|
# Flatten the tokens
|
|
loss_fct = CrossEntropyLoss()
|
|
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
|
shift_labels = shift_labels.view(-1)
|
|
# Enable model parallelism
|
|
shift_labels = shift_labels.to(shift_logits.device)
|
|
loss = loss_fct(shift_logits, shift_labels)
|
|
|
|
aux_loss = None
|
|
if output_router_logits:
|
|
aux_loss = load_balancing_loss_func(outputs[-1], self.num_experts, self.num_experts_per_tok)
|
|
if labels is not None:
|
|
loss += self.router_aux_loss_coef * aux_loss
|
|
|
|
if not return_dict:
|
|
output = (logits,) + outputs[1:]
|
|
if output_router_logits:
|
|
output = (aux_loss,) + output
|
|
return (loss,) + output if loss is not None else output
|
|
|
|
return MoeCausalLMOutputWithPast(
|
|
loss=loss,
|
|
aux_loss=aux_loss,
|
|
logits=logits,
|
|
past_key_values=None,
|
|
hidden_states=outputs[0],
|
|
attentions=None,
|
|
router_logits=outputs[-1],
|
|
)
|
|
else:
|
|
out = {}
|
|
hidden_states = outputs.get("hidden_states")
|
|
out["hidden_states"] = hidden_states
|
|
if output_router_logits:
|
|
out["past_router_logits"] = outputs["past_router_logits"]
|
|
return out
|