ColossalAI/extensions/csrc/kernel/cuda/flash_decoding_attention_ke...

354 lines
15 KiB
Plaintext

/*This code adapted from vllm:
* https://github.com/vllm-project/vllm/blob/main/csrc/attention/attention_kernels.cu
* with different kvcache layout. */
#include <ATen/cuda/CUDAContext.h>
#include <torch/extension.h>
#include <c10/cuda/CUDAGuard.h>
#include <stdio.h>
#include "common/micros.h"
#include "funcs/cast_functor.h"
#include "funcs/ternary_functor.h"
#include "funcs/binary_functor.h"
#include "common/vec_type_traits.h"
#include "attention/attention_utils.h"
#define WARP_SIZE 32
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define DIVIDE_ROUND_UP(a, b) (((a) + (b) - 1) / (b))
// 2^n => 2^n, 2^n-d => 2^(n-1)
#define ROUND_DOWN_HIGHEST_POWER_OF_TWO(x) (nextHighestPowerOf2((x - (x + 1) / 2 + 1)))
// a bit magic, you can ask chatgpt for help
// 2^n => 2^n, 2^n-d => 2^n
constexpr unsigned int nextHighestPowerOf2(unsigned int v) {
v--;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
v++;
return v;
}
using colossalAI::funcs::BinaryOpType;
using colossalAI::funcs::CastFunctor;
using colossalAI::funcs::TernaryOpFunctor;
using colossalAI::funcs::TernaryOpType;
using colossalAI::funcs::zero;
using colossalAI::common::VecTypeTrait;
using colossalAI::common::FloatVecTypeTrait;
using namespace colossalAI::cuda::attention;
// We only support head size of { 64, 128, 256 }
// models like Phi-2, whose head size is 80, is not supported right now
template<typename scalar_t, typename cache_t, int HEAD_SIZE, int BLOCK_SIZE, int NUM_THREADS>
__global__ void flash_decoding_attention_kernel(
scalar_t* __restrict__ out, // [num_tokens, num_heads, head_size]
const scalar_t* __restrict__ q, // [num_tokens, num_heads, head_size]
const cache_t* __restrict__ k_cache, // [num_blocks, num_kv_heads, block_size, head_size]
const cache_t* __restrict__ v_cache, // [num_blocks, num_kv_heads, block_size, head_size]
const int* __restrict__ context_lens, // [num_tokens]
const int* __restrict__ block_tables, // [num_tokens, max_num_blocks_per_seq]
const int max_seq_len,
const int num_kv_heads,
const float scale,
const int max_num_blocks_per_seq,
const int q_stride, // num_heads * head_size
const int kv_block_stride,
const int kv_head_stride) {
const int seq_idx = blockIdx.y;
const int head_idx = blockIdx.x;
const int thread_idx = threadIdx.x;
const int lane = thread_idx % WARP_SIZE;
const int warp_idx = thread_idx / WARP_SIZE;
const int num_heads = gridDim.x;
const int num_queries_per_kv = num_heads / num_kv_heads;
const int kv_head_idx = head_idx / num_queries_per_kv;
constexpr int NUM_WARPS = NUM_THREADS / WARP_SIZE;
constexpr int Q_SHARED_SIZE = (HEAD_SIZE * sizeof(scalar_t)) / sizeof(float4);
// here thread_group does not determine the number of threads responsible for a key
// but only the VEC_SIZE of each thread
constexpr int THREAD_GROUP_SIZE = MAX(WARP_SIZE / BLOCK_SIZE, 1);
constexpr int VEC_SIZE = MIN(ROUND_DOWN_HIGHEST_POWER_OF_TWO((HEAD_SIZE / THREAD_GROUP_SIZE)), sizeof(float4) / sizeof(scalar_t));
constexpr int NUM_VECS_PER_TOKEN = HEAD_SIZE / VEC_SIZE;
constexpr int NUM_THREADS_PER_TOKEN = MIN(NUM_VECS_PER_TOKEN, WARP_SIZE);
constexpr int NUM_ROUNDS_PER_TOKEN = NUM_VECS_PER_TOKEN / NUM_THREADS_PER_TOKEN;
constexpr int WARP_STRIDE = WARP_SIZE * NUM_ROUNDS_PER_TOKEN;
using K_vec = typename VecTypeTrait<scalar_t, VEC_SIZE>::Type;
using V_vec = typename VecTypeTrait<scalar_t, VEC_SIZE>::Type;
using L_vec = typename VecTypeTrait<scalar_t, VEC_SIZE>::Type;
using Float_vec = typename FloatVecTypeTrait<L_vec>::Type;
const int context_len = context_lens[seq_idx];
const int thread_group_offset = thread_idx % NUM_THREADS_PER_TOKEN;
const int num_context_blocks = DIVIDE_ROUND_UP(context_len, BLOCK_SIZE);
const int* block_table = block_tables + seq_idx * max_num_blocks_per_seq;
__shared__ float4 q_shared[Q_SHARED_SIZE];
__shared__ float red_shared_mem[2 * NUM_WARPS];
extern __shared__ char shared_mem[];
float* logits = reinterpret_cast<float*>(shared_mem);
float* out_shared_mem = reinterpret_cast<float*>(shared_mem);
float qk_max = -FLT_MAX;
const float4* q_ptr = reinterpret_cast<const float4*>(q + seq_idx * q_stride + head_idx * HEAD_SIZE);
#pragma unroll
for (int idx = thread_idx; idx < Q_SHARED_SIZE; idx += blockDim.x) {
q_shared[idx] = q_ptr[idx];
}
__syncthreads();
scalar_t* q_shared_ptr = reinterpret_cast<scalar_t*>(q_shared);
// each warp access a whole block
for (int block_idx = warp_idx; block_idx < num_context_blocks; block_idx += NUM_WARPS) {
const int64_t physical_block_number = static_cast<int64_t>(block_table[block_idx]);
#pragma unroll
for (int idx = lane; idx < BLOCK_SIZE * NUM_VECS_PER_TOKEN; idx += WARP_STRIDE) {
const int token_idx = block_idx * BLOCK_SIZE + idx / NUM_VECS_PER_TOKEN;
const cache_t* k_ptr = k_cache + physical_block_number * kv_block_stride
+ kv_head_idx * kv_head_stride
+ idx * VEC_SIZE;
K_vec k_vecs[NUM_ROUNDS_PER_TOKEN];
K_vec q_vecs[NUM_ROUNDS_PER_TOKEN];
// we must calculate at least one row of hidden vectors
#pragma unroll
for (int i = 0; i < NUM_ROUNDS_PER_TOKEN; i++) {
k_vecs[i] = (reinterpret_cast<const K_vec*>(k_ptr))[i * WARP_SIZE];
q_vecs[i] = (reinterpret_cast<K_vec*>(q_shared_ptr))[(idx + i * WARP_SIZE) % NUM_VECS_PER_TOKEN];
}
float qk = scale * Qk_dot<scalar_t, NUM_THREADS_PER_TOKEN>::dot(q_vecs, k_vecs);
if (thread_group_offset == 0) {
const bool mask = token_idx >= context_len;
logits[token_idx] = mask ? 0.f : qk;
qk_max = mask ? qk_max : fmaxf(qk_max, qk);
}
}
}
// there exists a __syncthreads within this function
qk_max = block_max<NUM_WARPS, NUM_THREADS_PER_TOKEN>(red_shared_mem, qk_max);
// Get the sum of the exp values.
float exp_sum = 0.f;
for (int i = thread_idx; i < context_len; i += NUM_THREADS) {
float val = __expf(logits[i] - qk_max);
logits[i] = val;
exp_sum += val;
}
exp_sum = block_sum<NUM_WARPS>(&red_shared_mem[NUM_WARPS], exp_sum);
const float inv_sum = __fdividef(1.f, exp_sum + 1e-6f);
for (int i = thread_idx; i < context_len; i += NUM_THREADS) {
logits[i] *= inv_sum;
}
__syncthreads();
Float_vec accs[NUM_ROUNDS_PER_TOKEN];
#pragma unroll
for (int i = 0; i < NUM_ROUNDS_PER_TOKEN; i++) {
zero(accs[i]);
}
V_vec zero_value;
zero(zero_value);
for (int block_idx = warp_idx; block_idx < num_context_blocks; block_idx += NUM_WARPS) {
const int64_t physical_block_number = static_cast<int64_t>(block_table[block_idx]);
scalar_t logit;
#pragma unroll
for (int idx = lane; idx < BLOCK_SIZE * NUM_VECS_PER_TOKEN; idx += WARP_STRIDE) {
const int token_idx = block_idx * BLOCK_SIZE + idx / NUM_VECS_PER_TOKEN;
const cache_t* v_ptr = v_cache + physical_block_number * kv_block_stride
+ kv_head_idx * kv_head_stride
+ idx * VEC_SIZE;
V_vec v_vecs[NUM_ROUNDS_PER_TOKEN];
#pragma unroll
for (int i = 0; i < NUM_ROUNDS_PER_TOKEN; i++) {
v_vecs[i] = (reinterpret_cast<const V_vec*>(v_ptr))[i * WARP_SIZE];
}
if (token_idx >= context_len) {
#pragma unroll
for (int i = 0; i < NUM_ROUNDS_PER_TOKEN; i++) {
v_vecs[i] = zero_value;
}
}
logit = CastFunctor<float, scalar_t>()(logits[token_idx]);
#pragma unroll
for (int i = 0; i < NUM_ROUNDS_PER_TOKEN; i++) {
accs[i] = TernaryOpFunctor<scalar_t, V_vec, Float_vec, TernaryOpType::kFma>()(logit, v_vecs[i], accs[i]);
}
}
}
// must insert a sync since both logits and out_shared_mem occupy the same buffer space
__syncthreads();
#pragma unroll
for (int i = 0; i < NUM_ROUNDS_PER_TOKEN; i++) {
block_sum<Float_vec, NUM_WARPS, NUM_THREADS_PER_TOKEN, VEC_SIZE>(out_shared_mem, accs[i]);
}
scalar_t* out_ptr = out + seq_idx * q_stride + head_idx * HEAD_SIZE;
L_vec out_reg;
#pragma unroll
for (int i = 0; i < NUM_ROUNDS_PER_TOKEN; i++) {
if (thread_idx < NUM_THREADS_PER_TOKEN) {
out_reg = CastFunctor<Float_vec, L_vec>()(accs[i]);
(reinterpret_cast<L_vec*>(out_ptr))[thread_idx + i * NUM_THREADS_PER_TOKEN] = out_reg;
}
}
}
#define LAUNCH_FLASH_DECODING_ATTENTION_V1(HEAD_SIZE) \
cudaFuncSetAttribute( \
((void*)flash_decoding_attention_kernel<T, CACHE_T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS>), \
cudaFuncAttributeMaxDynamicSharedMemorySize, shared_mem_size); \
flash_decoding_attention_kernel<T, CACHE_T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS> \
<<<grid, block, shared_mem_size, stream>>>( \
reinterpret_cast<T*>(out.data_ptr()), \
reinterpret_cast<T*>(query.data_ptr()), \
reinterpret_cast<CACHE_T*>(key_cache.data_ptr()), \
reinterpret_cast<CACHE_T*>(value_cache.data_ptr()), \
context_lens.data_ptr<int>(), \
block_tables.data_ptr<int>(), \
max_context_len, \
num_kv_heads, \
scale, \
max_num_blocks_per_seq, \
q_stride, \
kv_block_stride, \
kv_head_stride);
template<
typename T,
typename CACHE_T,
int BLOCK_SIZE,
int NUM_THREADS = 128>
void flash_decoding_attention_v1_launcher(
torch::Tensor& out, // [num_tokens, num_heads, head_size]
torch::Tensor& query, // [num_tokens, num_heads, head_size]
torch::Tensor& key_cache, // [num_blocks, num_kv_heads, block_size, head_size]
torch::Tensor& value_cache, // [num_blocks, num_kv_heads, block_size, head_size]
torch::Tensor& context_lens, // [num_tokens]
torch::Tensor& block_tables, // [num_tokens, max_num_blocks_per_seq]
int max_context_len,
float scale) {
int num_tokens = query.size(0);
int num_heads = query.size(1);
int head_size = query.size(2);
int max_num_blocks_per_seq = block_tables.size(1);
int q_stride = query.stride(0);
int num_kv_heads = key_cache.size(1);
int kv_block_stride = key_cache.stride(0);
int kv_head_stride = key_cache.stride(1);
constexpr int NUM_WARPS = NUM_THREADS / WARP_SIZE;
constexpr int THREAD_GROUP_SIZE = MAX(WARP_SIZE / BLOCK_SIZE, 1);
const int VEC_SIZE = MIN(ROUND_DOWN_HIGHEST_POWER_OF_TWO((head_size / THREAD_GROUP_SIZE)), sizeof(float4) / sizeof(T));
const int NUM_VECS_PER_TOKEN = head_size / VEC_SIZE;
const int NUM_THREADS_PER_TOKEN = MIN(NUM_VECS_PER_TOKEN, WARP_SIZE);
int padded_max_context_len = DIVIDE_ROUND_UP(max_context_len, BLOCK_SIZE) * BLOCK_SIZE;
int logits_size = padded_max_context_len * sizeof(float);
int outputs_size = (NUM_WARPS / 2) * NUM_THREADS_PER_TOKEN * VEC_SIZE * sizeof(float);
// Keep that in sync with the logic here!
int shared_mem_size = std::max(logits_size, outputs_size);
dim3 grid(num_heads, num_tokens, 1);
dim3 block(NUM_THREADS);
const at::cuda::OptionalCUDAGuard device_guard(device_of(query));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
switch (head_size) {
// NOTE(woosuk): To reduce the compilation time, we only compile for the
// head sizes that we use in the model.
case 64:
LAUNCH_FLASH_DECODING_ATTENTION_V1(64);
break;
case 128:
LAUNCH_FLASH_DECODING_ATTENTION_V1(128);
break;
case 256:
LAUNCH_FLASH_DECODING_ATTENTION_V1(256);
break;
default:
AT_ERROR("head size must be 64, 128, 256");
break;
}
}
#define CALL_V1_LAUNCHER(T, CACHE_T, BLOCK_SIZE) \
flash_decoding_attention_v1_launcher<T, CACHE_T, BLOCK_SIZE>( \
out, \
query, \
key_cache, \
value_cache, \
context_lens, \
block_tables, \
max_context_len, \
scale);
// NOTE(woosuk): To reduce the compilation time, we omitted block sizes
// 1, 2, 4, 64, 128, 256.
#define CALL_V1_LAUNCHER_BLOCK_SIZE(T, CACHE_T) \
switch (block_size) { \
case 8: \
CALL_V1_LAUNCHER(T, CACHE_T, 8); \
break; \
case 16: \
CALL_V1_LAUNCHER(T, CACHE_T, 16); \
break; \
case 32: \
CALL_V1_LAUNCHER(T, CACHE_T, 32); \
break; \
default: \
AT_ERROR("block size must be 8, 16, 32"); \
break; \
}
void flash_decoding_attention(
torch::Tensor& out, // [num_tokens, num_heads, head_size]
torch::Tensor& query, // [num_tokens, num_heads, head_size]
torch::Tensor& key_cache, // [num_blocks, num_kv_heads, block_size, head_size]
torch::Tensor& value_cache, // [num_blocks, num_kv_heads, block_size, head_size]
torch::Tensor& context_lens, // [num_tokens]
torch::Tensor& block_tables, // [num_tokens, max_num_blocks_per_seq]
int block_size,
int max_context_len,
torch::Tensor& tmp_out, // [num_tokens, num_heads, max_num_partitions, head_size]
torch::Tensor& tmp_out_lse, // [num_tokens, num_heads, max_num_partitions]
float scale) {
switch (query.scalar_type()) {
case at::ScalarType::Float:
CALL_V1_LAUNCHER_BLOCK_SIZE(float, float);
break;
case at::ScalarType::Half:
CALL_V1_LAUNCHER_BLOCK_SIZE(half, half);
break;
case at::ScalarType::BFloat16:
CALL_V1_LAUNCHER_BLOCK_SIZE(__nv_bfloat16, __nv_bfloat16);
break;
default:
AT_ERROR("Unsupported data type: ", toString(query.scalar_type()));
}
}
#undef LAUNCH_FLASH_DECODING_ATTENTION_V1
#undef CALL_V1_LAUNCHER
#undef CALL_V1_LAUNCHER_BLOCK_SIZE