ColossalAI/colossalai/shardformer/shard/sharder.py

175 lines
7.0 KiB
Python

from typing import Any, Callable, Dict, List, Union
import torch.nn as nn
from .._utils import getattr_, setattr_
from ..policies.autopolicy import get_autopolicy
from ..policies.basepolicy import Policy, SubModuleReplacementDescription
from .shard_config import ShardConfig
__all__ = ['ModelSharder', 'shard_model']
class ModelSharder(object):
r"""
Shard the original huggingface model according to the policy
Args:
policy (:class:`Policy`): The policy to shard the model
model (:class:`torch.Module`): The model to shard
shard_config: The setting of distributed model
"""
def __init__(self, model: nn.Module, policy: Policy, shard_config: ShardConfig = None) -> None:
self.model = model
self.policy = get_autopolicy(self.model) if policy is None else policy
self.shard_config = shard_config
def shard(self) -> None:
r"""
Shard the model according to the policy
"""
self.policy.set_model(self.model)
self.policy.set_shard_config(self.shard_config)
self._preprocess()
self._replace_module()
self._postprocess()
def _preprocess(self) -> None:
self.model = self.policy.preprocess()
def _postprocess(self) -> None:
self.model = self.policy.postprocess()
def _replace_module(self,) -> None:
r"""
Replace the module according to the policy, and replace the module one by one
Args:
model (:class:`torch.nn.Module`): The model to shard
"""
module_descriptions = self.policy.module_policy()
for layer_cls, module_description in module_descriptions.items():
attr_replacement = module_description.attribute_replacement
param_replacement = module_description.param_replacement
sub_module_replacement = module_description.sub_module_replacement
method_replacement = module_description.method_replacement
self._recursive_replace_layer(self.model, layer_cls, attr_replacement, param_replacement,
method_replacement, sub_module_replacement)
def _recursive_replace_layer(
self,
module: nn.Module,
origin_cls: Union[str, nn.Module],
attr_replacement: Dict[str, Any],
param_replacement: List[Callable],
method_replacement: Dict[str, Callable],
sub_module_replacement: List[Callable],
) -> None:
r"""
Reverse the replace layer operation
Args:
layer (torch.nn.Module): The object of layer to shard
origin_cls (Union[str, torch.nn.Module]): The origin layer class or a string of layer class name.
attr_replacement (Dict): The attribute dict to modify
param_replacement (List[Callable]): The function list to get parameter shard information in policy
sub_module_replacement (List[Callable]): The function list to get sub module shard information in policy
"""
if (isinstance(origin_cls, str) and origin_cls == module.__class__.__name__) or \
(module.__class__ == origin_cls):
if attr_replacement is not None:
self._replace_attr(module, attr_replacement)
if param_replacement is not None:
self._replace_param(module, param_replacement)
if method_replacement is not None:
self._replace_method(module, method_replacement)
if sub_module_replacement is not None:
self._replace_sub_module(module, sub_module_replacement)
for name, child in module.named_children():
self._recursive_replace_layer(child, origin_cls, attr_replacement, param_replacement, method_replacement,
sub_module_replacement)
def _replace_attr(
self,
module: nn.Module,
attr_replacement: Dict[str, Any],
) -> None:
r"""
Replace the attribute of the layer
Args:
layer (:class:`torch.nn.Module`): The object of layer to shard
attr_replacement (Dict): The attribute dict to modify
"""
for k, v in attr_replacement.items():
setattr_(module, k, v, ignore=True)
def _replace_param(
self,
module: nn.Module,
param_replacement: List[Callable],
) -> None:
r"""
Replace the parameter of the layer
Args:
layer (:class:`torch.nn.Module`): The object of layer to shard
param_replacement (List[Callable]): The function list to get parameter shard information in policy
"""
for param_func in param_replacement:
param_func(module)
def _replace_method(self, module: nn.Module, method_replacement: Dict[str, Callable]):
for method_name, new_method in method_replacement.items():
# bind the new method to the module
setattr(module, method_name, new_method.__get__(module, module.__class__))
def _replace_sub_module(
self,
org_layer: nn.Module,
sub_module_replacement: List[SubModuleReplacementDescription],
) -> None:
r"""
Shard one layer according to the policy, the layer should be the same class as the key in policy's argument_policy return dict
Args:
org_layer (torch.nn.Module): The origin layer object to shard
sub_module_replacement (List[SubModuleReplacementDescription]): The sub module replacement description list
"""
for description in sub_module_replacement:
suffix = description.suffix
target_module = description.target_module
kwargs = {} if description.kwargs is None else description.kwargs
assert target_module is not None, 'target_module should not be None'
# TODO: support different parallel mode
native_sub_module = getattr_(org_layer, suffix, ignore=True)
assert not isinstance(native_sub_module, target_module), \
f"The module with suffix {suffix} has been replaced, please check the policy"
# if it is None and we are allowed to ignore this module
# just skip
if description.ignore_if_not_exist and native_sub_module is None:
continue
try:
replace_layer = target_module.from_native_module(native_sub_module,
self.shard_config.tensor_parallel_process_group,
**kwargs)
except Exception as e:
raise RuntimeError(
f"Failed to replace {suffix} of type {native_sub_module.__class__.__qualname__}"
f" with {target_module.__qualname__} with the exception: {e}. "
"Please check your model configuration or sharding policy, you can set up an issue for us to help you as well."
)
setattr_(org_layer, suffix, replace_layer)