mirror of https://github.com/hpcaitech/ColossalAI
115 lines
4.9 KiB
Python
115 lines
4.9 KiB
Python
import copy
|
|
import os
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
import colossalai
|
|
from colossalai.logging import disable_existing_loggers
|
|
from colossalai.shardformer import ShardConfig, ShardFormer
|
|
from colossalai.shardformer.policies.chatglm import ChatGLMForConditionalGenerationPolicy, ChatGLMModelPolicy
|
|
from colossalai.tensor.d_tensor.api import is_customized_distributed_tensor, is_distributed_tensor
|
|
from colossalai.testing import (
|
|
assert_hf_output_close,
|
|
clear_cache_before_run,
|
|
parameterize,
|
|
rerun_if_address_is_in_use,
|
|
spawn,
|
|
)
|
|
from tests.kit.model_zoo import model_zoo
|
|
from tests.test_shardformer.test_model._utils import build_model, run_forward
|
|
|
|
|
|
def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn):
|
|
# check forward
|
|
org_output, org_loss, shard_output, shard_loss = run_forward(org_model, sharded_model, data_gen_fn,
|
|
output_transform_fn, loss_fn)
|
|
assert_hf_output_close(org_output, shard_output, ignore_keys=['past_key_values'])
|
|
# do backward
|
|
org_loss.backward()
|
|
shard_loss.backward()
|
|
|
|
assert torch.allclose(org_loss, shard_loss,
|
|
atol=1e-5), f"shard model loss is not equal to orgin model loss\n{org_loss}\n{shard_loss}"
|
|
|
|
# unwrap model
|
|
if org_model.__class__.__name__ == 'ChatGLMModel':
|
|
chatglm_model = org_model
|
|
shard_chatglm_model = sharded_model
|
|
else:
|
|
chatglm_model = org_model.transformer
|
|
shard_chatglm_model = sharded_model.transformer
|
|
|
|
# check attention grad
|
|
org_grad = chatglm_model.encoder.layers[0].self_attention.query_key_value.weight.grad
|
|
shard_grad = shard_chatglm_model.encoder.layers[0].self_attention.query_key_value.weight.grad
|
|
shard_weight = shard_chatglm_model.encoder.layers[0].self_attention.query_key_value.weight
|
|
|
|
if is_distributed_tensor(shard_weight) or is_customized_distributed_tensor(shard_weight):
|
|
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(2)]
|
|
shard_grad = torch.distributed.all_gather(shard_grad_list, shard_grad)
|
|
all_shard_grad = torch.cat(shard_grad_list, dim=0)
|
|
else:
|
|
all_shard_grad = shard_grad
|
|
assert torch.allclose(org_grad, all_shard_grad,
|
|
atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{shard_grad}"
|
|
|
|
# check embedding weights
|
|
org_grad = chatglm_model.embedding.word_embeddings.weight.grad
|
|
shard_grad = shard_chatglm_model.embedding.word_embeddings.weight.grad
|
|
shard_weight = shard_chatglm_model.embedding.word_embeddings.weight
|
|
|
|
if is_distributed_tensor(shard_weight) or is_customized_distributed_tensor(shard_weight):
|
|
shard_grad_list = [torch.zeros_like(shard_grad) for _ in range(2)]
|
|
torch.distributed.all_gather(shard_grad_list, shard_grad)
|
|
all_shard_grad = torch.cat(shard_grad_list, dim=0)
|
|
else:
|
|
all_shard_grad = shard_grad
|
|
|
|
assert torch.allclose(org_grad, all_shard_grad,
|
|
atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{all_shard_grad}"
|
|
|
|
|
|
@parameterize('enable_fused_normalization', [True, False])
|
|
@parameterize('enable_tensor_parallelism', [True, False])
|
|
@parameterize('enable_flash_attention', [True, False])
|
|
@parameterize('enable_jit_fused', [True, False])
|
|
def run_chatglm_test(enable_fused_normalization, enable_tensor_parallelism, enable_flash_attention, enable_jit_fused):
|
|
sub_model_zoo = model_zoo.get_sub_registry('transformers_chatglm')
|
|
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
|
|
# create new model
|
|
org_model = model_fn().cuda()
|
|
|
|
# shard model
|
|
shard_config = ShardConfig(enable_fused_normalization=enable_fused_normalization,
|
|
enable_tensor_parallelism=enable_tensor_parallelism,
|
|
enable_flash_attention=enable_flash_attention,
|
|
enable_jit_fused=enable_jit_fused)
|
|
model_copy = copy.deepcopy(org_model)
|
|
shard_former = ShardFormer(shard_config=shard_config)
|
|
if name == "transformers_chatglm":
|
|
sharded_model, _ = shard_former.optimize(model_copy, ChatGLMModelPolicy())
|
|
else:
|
|
sharded_model, _ = shard_former.optimize(model_copy, ChatGLMForConditionalGenerationPolicy())
|
|
sharded_model = sharded_model.cuda()
|
|
|
|
check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn)
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
def check_chatglm(rank, world_size, port):
|
|
disable_existing_loggers()
|
|
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
|
run_chatglm_test()
|
|
|
|
|
|
@pytest.mark.dist
|
|
@rerun_if_address_is_in_use()
|
|
@clear_cache_before_run()
|
|
def test_chatglm():
|
|
spawn(check_chatglm, 2)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_chatglm()
|