You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/tests/test_tensor/test_embedding_tp.py

76 lines
2.7 KiB

import torch
from colossalai.context.parallel_mode import ParallelMode
from colossalai.tensor import ColoTensor
from torch.nn import functional as F
from functools import partial
import colossalai
import pytest
import torch
import torch.multiprocessing as mp
from colossalai.testing import rerun_if_address_is_in_use
from colossalai.utils import free_port
from colossalai.core import global_context as gpc
from colossalai.tensor import TensorSpec, ComputePattern, ParallelAction, dist_spec, DistSpecManager
def init_1d_row(weight):
spec = TensorSpec(
dist_spec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [0], [gpc.get_world_size(ParallelMode.PARALLEL_1D)]),
[ParallelAction(priority=1, compute_pattern=ComputePattern.TP1D, parallel_mode=ParallelMode.PARALLEL_1D)])
with DistSpecManager.no_grad():
weight.set_spec(spec)
def check_grad_1d_row(model: torch.nn.Module, weight):
rank = gpc.get_local_rank(ParallelMode.PARALLEL_1D)
size = gpc.get_world_size(ParallelMode.PARALLEL_1D)
assert torch.allclose(model.weight.grad.chunk(size, 0)[rank], weight.grad)
def init_1d_col(weight):
spec = TensorSpec(
dist_spec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [-1], [gpc.get_world_size(ParallelMode.PARALLEL_1D)]),
[ParallelAction(priority=1, compute_pattern=ComputePattern.TP1D, parallel_mode=ParallelMode.PARALLEL_1D)])
with DistSpecManager.no_grad():
weight.set_spec(spec)
def check_grad_1d_col(model: torch.nn.Module, weight):
rank = gpc.get_local_rank(ParallelMode.PARALLEL_1D)
size = gpc.get_world_size(ParallelMode.PARALLEL_1D)
assert torch.allclose(model.weight.grad.chunk(size, -1)[rank], weight.grad)
def run_with_spec(spec_init_func, check_grad_func):
model = torch.nn.Embedding(12, 32).cuda()
weight = ColoTensor.init_from_torch_tensor(torch.nn.Parameter(model.weight.detach()))
spec_init_func(weight)
x = torch.tensor((0, 3, 6, 9)).cuda()
out = model(x)
colo_out = F.embedding(x, weight)
assert torch.allclose(out, colo_out)
grad = torch.rand_like(out)
out.backward(grad)
colo_out.backward(grad)
check_grad_func(model, weight)
def run_dist(rank, world_size, port):
config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),))
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
run_with_spec(init_1d_row, check_grad_1d_row)
run_with_spec(init_1d_col, check_grad_1d_col)
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [1, 4])
@rerun_if_address_is_in_use()
def test_embedding_1d(world_size):
run_func = partial(run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_embedding_1d(4)