mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
108 lines
3.3 KiB
108 lines
3.3 KiB
import pytest
|
|
import torch
|
|
import torch.distributed as dist
|
|
import torch.nn as nn
|
|
import torch.optim as optim
|
|
from packaging import version
|
|
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
|
|
from torch.testing import assert_close
|
|
|
|
from colossalai import launch
|
|
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
|
|
|
# example modified from https://pytorch.org/tutorials/intermediate/ddp_tutorial.html
|
|
|
|
|
|
def cleanup():
|
|
dist.destroy_process_group()
|
|
|
|
|
|
class ToyModel(nn.Module):
|
|
def __init__(self):
|
|
super(ToyModel, self).__init__()
|
|
self.net1 = nn.Linear(100, 100)
|
|
self.relu = nn.ReLU()
|
|
self.net2 = nn.Linear(100, 50)
|
|
|
|
def forward(self, x):
|
|
return self.net2(self.relu(self.net1(x)))
|
|
|
|
|
|
@parameterize("mode", ["grad", "params"])
|
|
def run_model(mode):
|
|
rank = dist.get_rank()
|
|
|
|
from colossalai.quantization.utils import patch_fsdp_params_comm_hook
|
|
|
|
patch_fsdp_params_comm_hook()
|
|
|
|
def get_grads_after_one_iteration(grad_hook=None, params_hook=None):
|
|
torch.manual_seed(0)
|
|
# create model and move it to GPU with id rank
|
|
model = ToyModel().to(rank)
|
|
fsdp_model = FSDP(model)
|
|
|
|
if grad_hook is not None:
|
|
fsdp_model.register_comm_hook(None, grad_hook)
|
|
|
|
if params_hook is not None:
|
|
fsdp_model.register_params_comm_hook(None, params_hook)
|
|
|
|
loss_fn = nn.MSELoss()
|
|
optimizer = optim.SGD(fsdp_model.parameters(), lr=0.001)
|
|
|
|
optimizer.zero_grad()
|
|
outputs = fsdp_model(torch.randn(20, 100))
|
|
labels = torch.randn(20, 50).to(rank)
|
|
loss_fn(outputs, labels).backward()
|
|
optimizer.step()
|
|
|
|
torch.distributed.barrier()
|
|
|
|
grad_dict = {}
|
|
for name, params in fsdp_model.named_parameters():
|
|
grad_dict[name] = params.grad
|
|
return grad_dict
|
|
|
|
from colossalai.quantization.fp8 import fp8_compress_fsdp_grad_comm_hook, fp8_compress_fsdp_params_comm_hook
|
|
|
|
if mode == "grad":
|
|
grad_dict = get_grads_after_one_iteration()
|
|
for hook in [
|
|
fp8_compress_fsdp_grad_comm_hook,
|
|
]:
|
|
grad_dict_w_hook = get_grads_after_one_iteration(grad_hook=hook)
|
|
if dist.get_rank() == 0:
|
|
for name in grad_dict:
|
|
assert_close(grad_dict[name], grad_dict_w_hook[name], rtol=0.1, atol=0.1)
|
|
elif mode == "params":
|
|
grad_dict = get_grads_after_one_iteration()
|
|
for hook in [
|
|
fp8_compress_fsdp_params_comm_hook,
|
|
]:
|
|
grad_dict_w_hook = get_grads_after_one_iteration(params_hook=hook)
|
|
if dist.get_rank() == 0:
|
|
for name in grad_dict:
|
|
assert_close(grad_dict[name], grad_dict_w_hook[name], rtol=0.1, atol=0.1)
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
|
|
def demo_basic(rank, world_size, port):
|
|
print(f"Running basic FSDP example on rank {rank}.")
|
|
launch(rank=rank, world_size=world_size, port=port, host="localhost")
|
|
run_model()
|
|
cleanup()
|
|
|
|
|
|
@pytest.mark.skipif(version.parse(torch.__version__) < version.parse("2.2.0"), reason="torch version < 2.2.0.")
|
|
@rerun_if_address_is_in_use()
|
|
def test_fsdp():
|
|
n_gpus = torch.cuda.device_count()
|
|
assert n_gpus >= 2, f"Requires at least 2 GPUs to run, but got {n_gpus}"
|
|
spawn(demo_basic, n_gpus)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_fsdp()
|