mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
116 lines
4.6 KiB
116 lines
4.6 KiB
from transformers.models.llama.modeling_llama import LlamaDecoderLayer, LlamaForCausalLM, LlamaModel, LlamaRMSNorm
|
|
|
|
from colossalai.inference.config import RPC_PARAM
|
|
from colossalai.inference.modeling.models.nopadding_llama import (
|
|
NopadLlamaAttention,
|
|
NopadLlamaMLP,
|
|
llama_causal_lm_forward,
|
|
llama_decoder_layer_forward,
|
|
llama_model_forward,
|
|
llama_rmsnorm_forward,
|
|
)
|
|
from colossalai.inference.utils import init_to_get_rotary
|
|
from colossalai.shardformer.layer import Linear1D_Col, Linear1D_Row
|
|
from colossalai.shardformer.policies.base_policy import ModulePolicyDescription, SubModuleReplacementDescription
|
|
from colossalai.shardformer.policies.llama import LlamaForCausalLMPolicy
|
|
|
|
|
|
class NoPaddingLlamaModelInferPolicy(LlamaForCausalLMPolicy, RPC_PARAM):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
def module_policy(self):
|
|
policy = super().module_policy()
|
|
|
|
if self.shard_config.enable_tensor_parallelism:
|
|
decoder_attribute_replacement = {
|
|
"self_attn.hidden_size": self.model.config.hidden_size // self.shard_config.tensor_parallel_size,
|
|
"self_attn.num_heads": self.model.config.num_attention_heads // self.shard_config.tensor_parallel_size,
|
|
}
|
|
if getattr(self.model.config, "num_key_value_heads", False):
|
|
decoder_attribute_replacement["self_attn.num_key_value_heads"] = (
|
|
self.model.config.num_key_value_heads // self.shard_config.tensor_parallel_size
|
|
)
|
|
else:
|
|
decoder_attribute_replacement = None
|
|
|
|
policy[LlamaDecoderLayer] = ModulePolicyDescription(
|
|
attribute_replacement=decoder_attribute_replacement,
|
|
sub_module_replacement=[
|
|
SubModuleReplacementDescription(
|
|
suffix="mlp.gate_proj",
|
|
target_module=Linear1D_Col,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="mlp.up_proj",
|
|
target_module=Linear1D_Col,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="mlp.down_proj",
|
|
target_module=Linear1D_Row,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="mlp",
|
|
target_module=NopadLlamaMLP,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="self_attn.q_proj",
|
|
target_module=Linear1D_Col,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="self_attn.k_proj",
|
|
target_module=Linear1D_Col,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="self_attn.v_proj",
|
|
target_module=Linear1D_Col,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="self_attn.o_proj",
|
|
target_module=Linear1D_Row,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="self_attn",
|
|
target_module=NopadLlamaAttention,
|
|
kwargs={
|
|
"model_shard_infer_config": self.shard_config.extra_kwargs["model_shard_infer_config"],
|
|
},
|
|
),
|
|
],
|
|
)
|
|
|
|
policy[LlamaForCausalLM] = ModulePolicyDescription(
|
|
sub_module_replacement=[
|
|
SubModuleReplacementDescription(
|
|
suffix="lm_head", target_module=Linear1D_Col, kwargs={"gather_output": True}
|
|
)
|
|
],
|
|
)
|
|
|
|
# self.shard_config._infer()
|
|
self.append_or_create_method_replacement(
|
|
description={"forward": llama_causal_lm_forward}, policy=policy, target_key=LlamaForCausalLM
|
|
)
|
|
self.append_or_create_method_replacement(
|
|
description={"forward": llama_model_forward}, policy=policy, target_key=LlamaModel
|
|
)
|
|
self.append_or_create_method_replacement(
|
|
description={"forward": llama_decoder_layer_forward}, policy=policy, target_key=LlamaDecoderLayer
|
|
)
|
|
self.append_or_create_method_replacement(
|
|
description={"forward": llama_rmsnorm_forward}, policy=policy, target_key=LlamaRMSNorm
|
|
)
|
|
|
|
return policy
|
|
|
|
def postprocess(self):
|
|
init_to_get_rotary(self.model.model, self.model.config.rope_theta)
|
|
return self.model
|
|
|
|
def to_rpc_param(self) -> str:
|
|
return __class__.__name__
|
|
|
|
@staticmethod
|
|
def from_rpc_param() -> "NoPaddingLlamaModelInferPolicy":
|
|
return NoPaddingLlamaModelInferPolicy()
|