You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/inference/modeling/models/glide_llama.py

463 lines
18 KiB

# This is modified from huggingface transformers
# https://github.com/huggingface/transformers/blob/v4.36.2/src/transformers/models/llama/modeling_llama.py
import warnings
from types import MethodType
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
from transformers.cache_utils import Cache, DynamicCache, StaticCache
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from transformers.models.llama.modeling_llama import (
LlamaAttention,
LlamaConfig,
LlamaDecoderLayer,
LlamaDynamicNTKScalingRotaryEmbedding,
LlamaForCausalLM,
LlamaLinearScalingRotaryEmbedding,
LlamaMLP,
LlamaModel,
LlamaRMSNorm,
LlamaRotaryEmbedding,
)
from colossalai.inference.spec import GlideInput
from colossalai.kernel.triton import flash_decoding_attention
from colossalai.logging import get_dist_logger
logger = get_dist_logger(__name__)
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_single_rotary_pos_emb(q, cos, sin, position_ids):
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
q_embed = (q * cos) + (rotate_half(q) * sin)
return q_embed
def glide_llama_causal_lm_forward(
self: LlamaForCausalLM,
input_ids: torch.LongTensor = None,
glide_input: Optional[GlideInput] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, LlamaForCausalLM
>>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
glide_input=glide_input,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
logits = logits.float()
if not return_dict:
output = (logits,) + outputs[1:]
return output
return CausalLMOutputWithPast(
loss=None,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def glide_llama_model_forward(
self: LlamaModel,
input_ids: torch.LongTensor = None,
glide_input: GlideInput = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError(
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
)
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once("`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`.")
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
past_seen_tokens = 0
if use_cache: # kept for BC (cache positions)
if not isinstance(past_key_values, StaticCache):
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
past_seen_tokens = past_key_values.get_seq_length()
if cache_position is None:
if isinstance(past_key_values, StaticCache):
raise ValueError("cache_position is a required argument when using StaticCache.")
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
attention_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position)
# embed positions
hidden_states = inputs_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
# GlideLlamaDecoderLayer
layer_outputs = decoder_layer(
hidden_states,
glide_input=glide_input,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = None
if use_cache:
next_cache = (
next_decoder_cache.to_legacy_cache() if isinstance(next_decoder_cache, Cache) else next_decoder_cache
)
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
class GlideLlamaConfig(LlamaConfig):
"""Configuration class with specific arguments used by GLIDE llama model as a drafter"""
def __init__(
self,
large_hidden_size=4096,
large_num_attention_heads=32,
**kwargs,
):
super().__init__(**kwargs)
self.large_hidden_size = large_hidden_size
self.large_num_attention_heads = large_num_attention_heads
class LlamaCrossAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: GlideLlamaConfig):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.max_position_embeddings = config.max_position_embeddings
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {self.num_heads})."
)
# large model (verifier) configs
self.large_hidden_size = config.large_hidden_size
self.large_num_heads = config.large_num_attention_heads
self.large_head_dim = self.large_hidden_size // self.large_num_heads
self.q_proj = nn.Linear(self.hidden_size, self.large_num_heads * self.large_head_dim, bias=False)
self.o_proj = nn.Linear(self.large_num_heads * self.large_head_dim, self.hidden_size, bias=False)
self._init_rope()
def _init_rope(self):
if self.config.rope_scaling is None:
self.rotary_emb = LlamaRotaryEmbedding(
self.large_head_dim,
max_position_embeddings=self.max_position_embeddings,
)
else:
scaling_type = self.config.rope_scaling["type"]
scaling_factor = self.config.rope_scaling["factor"]
if scaling_type == "linear":
self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
self.large_head_dim,
max_position_embeddings=self.max_position_embeddings,
scaling_factor=scaling_factor,
)
elif scaling_type == "dynamic":
self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
self.large_head_dim,
max_position_embeddings=self.max_position_embeddings,
scaling_factor=scaling_factor,
)
else:
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
glide_input: GlideInput = None, # Used for glimpsing main model's KV caches
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Optional[torch.Tensor]:
bsz, q_len, _ = hidden_states.size()
block_tables = glide_input.block_tables
large_k_cache = glide_input.large_k_cache
large_v_cache = glide_input.large_v_cache
sequence_lengths = glide_input.sequence_lengths
cache_block_size = large_k_cache.size(-2)
query_states = self.q_proj(hidden_states)
kv_seq_len = sequence_lengths.max().item()
query_states = query_states.view(bsz, -1, self.large_num_heads, self.large_head_dim).transpose(1, 2)
# for RoPE
position_ids = position_ids + glide_input.n_spec_tokens
cos, sin = self.rotary_emb(query_states, position_ids)
query_states = apply_single_rotary_pos_emb(query_states, cos, sin, position_ids)
query_states = query_states.transpose(1, 2)
query_states = query_states.reshape(-1, self.large_num_heads, self.large_head_dim)
attn_output = flash_decoding_attention(
q=query_states,
k_cache=large_k_cache,
v_cache=large_v_cache,
kv_seq_len=sequence_lengths,
block_tables=block_tables,
block_size=cache_block_size,
max_seq_len_in_batch=kv_seq_len,
) # attn_output: [bsz * q_len, num_heads * head_dim]
attn_output = attn_output.reshape(bsz, q_len, self.large_hidden_size)
attn_output = self.o_proj(attn_output)
return attn_output
# A class to be used to replace LlamaDecoderLayer in a Llama Model as Drafter in speculative decoding.
# Refer to GLIDE with a CAPE https://arxiv.org/pdf/2402.02082.pdf
class GlideLlamaDecoderLayer(nn.Module):
def __init__(self, config: GlideLlamaConfig, layer_idx: Optional[int] = None):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = LlamaAttention(config=config, layer_idx=layer_idx)
self.cross_attn = LlamaCrossAttention(config=config)
self.mlp = LlamaMLP(config)
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
@staticmethod
def from_native_module(module: LlamaDecoderLayer, *args, **kwargs) -> "GlideLlamaDecoderLayer":
"""Build a GlideLlamaDecoderLayer from a native LlamaDecoderLayer"""
config: LlamaConfig = module.mlp.config # XXX
layer_idx = module.self_attn.layer_idx
glide_config = GlideLlamaConfig(**config.to_dict())
glide_decoder_layer = GlideLlamaDecoderLayer(glide_config, layer_idx=layer_idx)
return glide_decoder_layer
def forward(
self,
hidden_states: torch.Tensor,
glide_input: GlideInput = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*):
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
query_sequence_length, key_sequence_length)` if default attention is used.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
"""
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
**kwargs,
)
hidden_states = residual + hidden_states
curr_q_len = hidden_states.size(1)
# Cross attention
if glide_input is None or not glide_input.glimpse_ready:
warnings.warn(
"Data used for glimpsing the past KV caches of the main model (verifier) is not complete. "
"Fall back to normal decoder layer modeling (drafter). "
"This might lead to incorrect results when using the Glide Models for speculative decoding."
)
elif curr_q_len == 1:
# Notice that we skip prefill stage
# always use the output of the main model as the inputs for the next round of speculation
residual = hidden_states
hidden_states = self.cross_attn(
hidden_states=hidden_states,
glide_input=glide_input,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
use_cache=True,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if use_cache:
outputs += (present_key_value,)
return outputs
class GlideLlamaForCausalLM(LlamaForCausalLM):
def __init__(self, config: GlideLlamaConfig):
super().__init__(config)
self.config = config
bound_method = MethodType(glide_llama_causal_lm_forward, self)
setattr(self, "forward", bound_method)
bound_method = MethodType(glide_llama_model_forward, self.model)
model = getattr(self, "model")
setattr(model, "forward", bound_method)
replaced_layers = nn.ModuleList(
[GlideLlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
setattr(model, "layers", replaced_layers)