mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
95 lines
3.3 KiB
95 lines
3.3 KiB
import os |
|
from functools import partial |
|
from pathlib import Path |
|
|
|
import colossalai |
|
import pytest |
|
import torch |
|
import torch.multiprocessing as mp |
|
import torch.nn as nn |
|
from colossalai.context.parallel_mode import ParallelMode |
|
from colossalai.core import global_context as gpc |
|
from colossalai.engine.schedule import PipelineSchedule |
|
from colossalai.logging import get_dist_logger |
|
from colossalai.trainer import Trainer |
|
from colossalai.utils import MultiTimer, free_port, get_dataloader |
|
from torch.optim import Adam |
|
from torchvision import transforms |
|
from torchvision.datasets import CIFAR10 |
|
from torchvision.models import resnet18 |
|
|
|
BATCH_SIZE = 4 |
|
IMG_SIZE = 32 |
|
NUM_EPOCHS = 200 |
|
|
|
CONFIG = dict(parallel=dict(pipeline=2),) |
|
|
|
|
|
def run_trainer_with_pipeline(rank, world_size, port): |
|
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') |
|
|
|
# build model |
|
model = resnet18(num_classes=10) |
|
|
|
if gpc.get_local_rank(ParallelMode.PIPELINE) == 0: |
|
model = nn.Sequential(model.conv1, model.bn1, model.relu, model.maxpool, model.layer1, model.layer2) |
|
elif gpc.get_local_rank(ParallelMode.PIPELINE) == 1: |
|
|
|
class Flatten(nn.Module): |
|
|
|
def forward(self, x): |
|
return torch.flatten(x, 1) |
|
|
|
model = nn.Sequential(model.layer3, model.layer4, model.avgpool, Flatten(), model.fc) |
|
|
|
# build dataloaders |
|
train_dataset = CIFAR10(root=Path(os.environ['DATA']), |
|
download=True, |
|
transform=transforms.Compose([ |
|
transforms.Resize(size=(IMG_SIZE, IMG_SIZE)), |
|
transforms.ToTensor(), |
|
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)) |
|
])) |
|
|
|
train_dataloader = get_dataloader(dataset=train_dataset, |
|
shuffle=True, |
|
batch_size=BATCH_SIZE, |
|
pin_memory=True, |
|
drop_last=True) |
|
|
|
# build optimizer |
|
optimizer = Adam(model.parameters(), lr=0.001) |
|
criterion = nn.CrossEntropyLoss() |
|
|
|
engine, train_dataloader, *args = colossalai.initialize(model=model, |
|
optimizer=optimizer, |
|
criterion=criterion, |
|
train_dataloader=train_dataloader) |
|
|
|
logger = get_dist_logger() |
|
logger.info("engine is built", ranks=[0]) |
|
pipe_schedule = PipelineSchedule(num_microbatches=2) |
|
timer = MultiTimer() |
|
trainer = Trainer(engine=engine, schedule=pipe_schedule, logger=logger, timer=timer) |
|
logger.info("trainer is built", ranks=[0]) |
|
|
|
logger.info("start training", ranks=[0]) |
|
|
|
trainer.fit(train_dataloader=train_dataloader, |
|
epochs=NUM_EPOCHS, |
|
max_steps=3, |
|
display_progress=True, |
|
test_interval=5) |
|
gpc.destroy() |
|
torch.cuda.empty_cache() |
|
|
|
|
|
@pytest.mark.dist |
|
def test_trainer_with_pipeline(): |
|
world_size = 4 |
|
run_func = partial(run_trainer_with_pipeline, world_size=world_size, port=free_port()) |
|
mp.spawn(run_func, nprocs=world_size) |
|
|
|
|
|
if __name__ == '__main__': |
|
test_trainer_with_pipeline()
|
|
|