ColossalAI/model_zoo/moe/models.py

209 lines
8.4 KiB
Python

import math
import torch
import torch.nn as nn
from colossalai.context import ParallelMode
from colossalai.nn.layer import VanillaPatchEmbedding, VanillaClassifier, \
WrappedDropout as Dropout, WrappedDropPath as DropPath
from colossalai.nn.layer.moe import build_ffn_experts, MoeLayer, Top2Router, NormalNoiseGenerator
from .util import moe_sa_args, moe_mlp_args
from ..helper import TransformerLayer
from colossalai.global_variables import moe_env
from colossalai.utils import get_current_device
class VanillaSelfAttention(nn.Module):
"""Standard ViT self attention.
"""
def __init__(self,
d_model: int,
n_heads: int,
d_kv: int,
attention_drop: float = 0,
drop_rate: float = 0,
bias: bool = True,
dropout1=None,
dropout2=None):
super().__init__()
self.n_heads = n_heads
self.d_kv = d_kv
self.scale = 1.0 / math.sqrt(self.d_kv)
self.dense1 = nn.Linear(d_model, 3 * n_heads * d_kv, bias, device=get_current_device())
self.softmax = nn.Softmax(dim=-1)
self.atten_drop = nn.Dropout(attention_drop) if dropout1 is None else dropout1
self.dense2 = nn.Linear(n_heads * d_kv, d_model, device=get_current_device())
self.dropout = nn.Dropout(drop_rate) if dropout2 is None else dropout2
def forward(self, x):
qkv = self.dense1(x)
new_shape = qkv.shape[:2] + (3, self.n_heads, self.d_kv)
qkv = qkv.view(*new_shape)
qkv = qkv.permute(2, 0, 3, 1, 4)
q, k, v = qkv[:]
x = torch.matmul(q, k.transpose(-2, -1)) * self.scale
x = self.atten_drop(self.softmax(x))
x = torch.matmul(x, v)
x = x.transpose(1, 2)
new_shape = x.shape[:2] + (self.n_heads * self.d_kv,)
x = x.reshape(*new_shape)
x = self.dense2(x)
x = self.dropout(x)
return x
class VanillaFFN(nn.Module):
"""FFN composed with two linear layers, also called MLP.
"""
def __init__(self,
d_model: int,
d_ff: int,
activation=None,
drop_rate: float = 0,
bias: bool = True,
dropout1=None,
dropout2=None):
super().__init__()
dense1 = nn.Linear(d_model, d_ff, bias, device=get_current_device())
act = nn.GELU() if activation is None else activation
dense2 = nn.Linear(d_ff, d_model, bias, device=get_current_device())
drop1 = nn.Dropout(drop_rate) if dropout1 is None else dropout1
drop2 = nn.Dropout(drop_rate) if dropout2 is None else dropout2
self.ffn = nn.Sequential(dense1, act, drop1, dense2, drop2)
def forward(self, x):
return self.ffn(x)
class Widenet(nn.Module):
def __init__(self,
num_experts: int,
capacity_factor_train: float = 1.25,
capacity_factor_eval: float = 2.0,
drop_tks: bool = True,
img_size: int = 224,
patch_size: int = 16,
in_chans: int = 3,
num_classes: int = 1000,
depth: int = 12,
d_model: int = 768,
num_heads: int = 12,
d_kv: int = 64,
d_ff: int = 4096,
attention_drop: float = 0.,
drop_rate: float = 0.1,
drop_path: float = 0.):
super().__init__()
embedding = VanillaPatchEmbedding(img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
embed_size=d_model)
embed_dropout = Dropout(p=drop_rate, mode=ParallelMode.TENSOR)
shared_sa = VanillaSelfAttention(**moe_sa_args(
d_model=d_model, n_heads=num_heads, d_kv=d_kv, attention_drop=attention_drop, drop_rate=drop_rate))
noisy_func = NormalNoiseGenerator(num_experts)
shared_router = Top2Router(capacity_factor_train=capacity_factor_train,
capacity_factor_eval=capacity_factor_eval,
noisy_func=noisy_func,
drop_tks=drop_tks)
shared_experts = build_ffn_experts(num_experts, d_model, d_ff, drop_rate=drop_rate)
# stochastic depth decay rule
dpr = [x.item() for x in torch.linspace(0, drop_path, depth)]
blocks = [
TransformerLayer(att=shared_sa,
ffn=MoeLayer(dim_model=d_model,
num_experts=num_experts,
router=shared_router,
experts=shared_experts),
norm1=nn.LayerNorm(d_model, eps=1e-6),
norm2=nn.LayerNorm(d_model, eps=1e-6),
droppath=DropPath(p=dpr[i], mode=ParallelMode.TENSOR)) for i in range(depth)
]
norm = nn.LayerNorm(d_model, eps=1e-6)
self.linear = VanillaClassifier(in_features=d_model, num_classes=num_classes)
nn.init.zeros_(self.linear.weight)
nn.init.zeros_(self.linear.bias)
self.widenet = nn.Sequential(embedding, embed_dropout, *blocks, norm)
def forward(self, x):
moe_env.reset_loss()
x = self.widenet(x)
x = torch.mean(x, dim=1)
x = self.linear(x)
return x
class ViTMoE(nn.Module):
def __init__(self,
num_experts: int,
capacity_factor_train: float = 1.25,
capacity_factor_eval: float = 2.0,
drop_tks: bool = True,
img_size: int = 224,
patch_size: int = 16,
in_chans: int = 3,
num_classes: int = 1000,
depth: int = 12,
d_model: int = 768,
num_heads: int = 12,
d_kv: int = 64,
d_ff: int = 3072,
attention_drop: float = 0.,
drop_rate: float = 0.1,
drop_path: float = 0.):
super().__init__()
embedding = VanillaPatchEmbedding(img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
embed_size=d_model)
embed_dropout = Dropout(p=drop_rate, mode=ParallelMode.TENSOR)
noisy_func = NormalNoiseGenerator(num_experts)
router = Top2Router(capacity_factor_train=capacity_factor_train,
capacity_factor_eval=capacity_factor_eval,
noisy_func=noisy_func,
drop_tks=drop_tks)
assert depth % 2 == 0
# stochastic depth decay rule
dpr = [x.item() for x in torch.linspace(0, drop_path, depth)]
blocks = []
for i in range(depth):
sa = VanillaSelfAttention(**moe_sa_args(
d_model=d_model, n_heads=num_heads, d_kv=d_kv, attention_drop=attention_drop, drop_rate=drop_rate))
ffn = VanillaFFN(**moe_mlp_args(
d_model=d_model, d_ff=d_ff, drop_rate=drop_rate)) if i % 2 == 0 else \
MoeLayer(dim_model=d_model, num_experts=num_experts, router=router,
experts=build_ffn_experts(num_experts, d_model, d_ff, drop_rate=drop_rate))
layer = TransformerLayer(att=sa,
ffn=ffn,
norm1=nn.LayerNorm(d_model, eps=1e-6),
norm2=nn.LayerNorm(d_model, eps=1e-6),
droppath=DropPath(p=dpr[i], mode=ParallelMode.TENSOR))
blocks.append(layer)
norm = nn.LayerNorm(d_model, eps=1e-6)
self.linear = VanillaClassifier(in_features=d_model, num_classes=num_classes)
nn.init.zeros_(self.linear.weight)
nn.init.zeros_(self.linear.bias)
self.vitmoe = nn.Sequential(embedding, embed_dropout, *blocks, norm)
def forward(self, x):
moe_env.reset_loss()
x = self.vitmoe(x)
x = torch.mean(x, dim=1)
x = self.linear(x)
return x