mirror of https://github.com/hpcaitech/ColossalAI
126 lines
4.9 KiB
Python
126 lines
4.9 KiB
Python
import torch
|
|
import math
|
|
|
|
|
|
class CPUAdam(torch.optim.Optimizer):
|
|
optimizer_id = 0
|
|
|
|
def __init__(self,
|
|
model_params,
|
|
lr=1e-3,
|
|
bias_correction=True,
|
|
betas=(0.9, 0.999),
|
|
eps=1e-8,
|
|
weight_decay=0,
|
|
adamw_mode=True,
|
|
loss_scale=-1,
|
|
simd_log=False):
|
|
"""
|
|
An implementation equivalent to `torch.optim.Adam`.
|
|
The difference is that model_params are sharded parameters belonging to a ShardedModelV2 instance.
|
|
The sharded param of model_params can resident on both CPU and CUDA.
|
|
"""
|
|
|
|
default_args = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, bias_correction=bias_correction)
|
|
super(CPUAdam, self).__init__(model_params, default_args)
|
|
self.opt_id = CPUAdam.optimizer_id
|
|
CPUAdam.optimizer_id = CPUAdam.optimizer_id + 1
|
|
self.adam_w_mode = adamw_mode
|
|
self.loss_scale = loss_scale
|
|
try:
|
|
import cpu_adam
|
|
except ImportError:
|
|
raise ImportError('Please install colossalai from source code to use CPUAdam')
|
|
self.cpu_adam_op = cpu_adam
|
|
self.cpu_adam_op.create_adam(self.opt_id, lr, betas[0], betas[1], eps, weight_decay, adamw_mode, simd_log)
|
|
|
|
def __del__(self):
|
|
if self.cpu_adam_op:
|
|
self.cpu_adam_op.destroy_adam(self.opt_id)
|
|
|
|
def torch_adam_update(self,
|
|
data,
|
|
grad,
|
|
exp_avg,
|
|
exp_avg_sq,
|
|
lr,
|
|
beta1,
|
|
beta2,
|
|
eps,
|
|
weight_decay,
|
|
bias_correction1,
|
|
bias_correction2,
|
|
loss_scale,
|
|
use_adamw=False):
|
|
if loss_scale is not None:
|
|
grad.div_(loss_scale)
|
|
|
|
if weight_decay != 0:
|
|
if use_adamw:
|
|
data.mul_(1 - lr * weight_decay)
|
|
else:
|
|
grad = grad.add(data, alpha=weight_decay)
|
|
|
|
# Decay the first and second moment running average coefficient
|
|
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
|
|
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
|
|
|
|
# TODO(jiaruifang) dose not support amsgrad
|
|
denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(eps)
|
|
|
|
step_size = lr / bias_correction1
|
|
|
|
data.addcdiv_(exp_avg, denom, value=-step_size)
|
|
|
|
@torch.no_grad()
|
|
def step(self, closure=None):
|
|
loss = None
|
|
if closure is not None:
|
|
with torch.enable_grad():
|
|
loss = closure()
|
|
|
|
for _, group in enumerate(self.param_groups):
|
|
for _, p in enumerate(group['params']):
|
|
|
|
if p.grad is None:
|
|
continue
|
|
|
|
state = self.state[p]
|
|
|
|
target_device = p.device
|
|
if len(state) == 0:
|
|
state['step'] = 0
|
|
|
|
# gradient momentums
|
|
state['exp_avg'] = torch.zeros_like(p.data, dtype=torch.float, device=target_device)
|
|
# gradient variances
|
|
state['exp_avg_sq'] = torch.zeros_like(p.data, dtype=torch.float, device=target_device)
|
|
|
|
state['step'] += 1
|
|
beta1, beta2 = group['betas']
|
|
|
|
if target_device.type == 'cpu':
|
|
assert state['exp_avg'].device.type == 'cpu', "exp_avg should stay on cpu"
|
|
assert state['exp_avg_sq'].device.type == 'cpu', "exp_avg should stay on cpu"
|
|
self.cpu_adam_op.adam_update(self.opt_id, state['step'], group['lr'], beta1, beta2, group['eps'],
|
|
group['weight_decay'], group['bias_correction'], p.data, p.grad.data,
|
|
state['exp_avg'], state['exp_avg_sq'], self.loss_scale)
|
|
elif target_device.type == 'cuda':
|
|
# FIXME() prepare grad on cuda
|
|
if p.grad.device.type == 'cpu':
|
|
p.grad = p.grad.to(target_device)
|
|
|
|
assert state['exp_avg'].device.type == 'cuda', "exp_avg should stay on cuda"
|
|
assert state['exp_avg_sq'].device.type == 'cuda', "exp_avg should stay on cuda"
|
|
|
|
bias_correction1 = 1 - beta1**state['step']
|
|
bias_correction2 = 1 - beta2**state['step']
|
|
|
|
# adam on cuda
|
|
self.torch_adam_update(p.data, p.grad.data, state['exp_avg'], state['exp_avg_sq'], group['lr'],
|
|
beta1, beta2, group['eps'], group['weight_decay'], bias_correction1,
|
|
bias_correction2, self.loss_scale)
|
|
else:
|
|
raise RuntimeError
|
|
return loss
|