Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

234 lines
9.5 KiB

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import inspect
from collections.abc import Iterable
from colossalai.registry import *
def build_from_config(module, config: dict):
"""Returns an object of :class:`module` constructed from `config`.
:param module: A python or user-defined class
:type module: class
:param config: A python dict containing information used in the construction
of the return object
:type config: dict
:raises AssertionError: Raises an AssertionError if `module` is not a class
:return: An object of interest
:rtype: Object
"""
assert inspect.isclass(module), 'module must be a class'
return module(**config)
def build_from_registry(config, registry: Registry):
"""Returns an object constructed from `config`, the type of the object
is specified by `registry`.
:param config: A python dict or a :class:`colossalai.context.Config` object
containing information used in the construction of the return object
:type config: dict or :class:`colossalai.context.colossalai.context.Config`
:param registry: A registry specifying the type of the return object
:type registry: :class:`Registry`
:raises AssertionError: Raises an AssertionError if `registry` is not an object
of :class:`Registry` or `mod_type` in `config` is not found in `registry`
:raises Exception: Raises an Exception if an error occurred when building
from registry
:return: An object specified by `registry`
:rtype: Python object specified by `registry`
"""
config_ = config.copy() # keep the original config untouched
assert isinstance(
registry, Registry), f'Expected type Registry but got {type(registry)}'
mod_type = config_.pop('type')
assert registry.has(
mod_type), f'{mod_type} is not found in registry {registry.name}'
try:
obj = registry.get_module(mod_type)(**config_)
except Exception as e:
print(
f'An error occurred when building {mod_type} from registry {registry.name}',
flush=True)
raise e
return obj
def build_layer(config):
"""Returns a layer object of :class:`nn.Module` constructed from `config`.
:param config: A python dict or a :class:`colossalai.context.Config` object
containing information used in the construction of the return object
:type config: dict or :class:`colossalai.context.Config`
:return: An object of :class:`torch.nn.Module`
:rtype: :class:`torch.nn.Module`
"""
return build_from_registry(config, LAYERS)
def build_loss(config):
"""Returns a loss function object of :class:`torch.autograd.Function` constructed
from `config`.
:param config: A python dict or a :class:`colossalai.context.Config` object
containing information used in the construction of the return object
:type config: dict or :class:`colossalai.context.Config`
:return: An object of :class:`torch.nn.modules.loss._Loss`
:rtype: :class:`torch.nn.modules.loss._Loss`
"""
return build_from_registry(config, LOSSES)
def build_model(config):
"""Returns a model object of :class:`nn.Module` constructed from `config`.
:param config: A python dict or a :class:`colossalai.context.Config` object
containing information used in the construction of the return object
:type config: dict or :class:`colossalai.context.Config`
:return: An object of :class:`torch.nn.Module`
:rtype: :class:`torch.nn.Module`
"""
return build_from_registry(config, MODELS)
def build_dataset(config):
"""Returns a dataset object of :class:`torch.utils.data.Dataset` constructed
from `config`.
:param config: A python dict or a :class:`colossalai.context.Config` object
containing information used in the construction of the return object
:type config: dict or :class:`colossalai.context.Config`
:return: An object of :class:`torch.utils.data.Dataset`
:rtype: :class:`torch.utils.data.Dataset`
"""
return build_from_registry(config, DATASETS)
def build_optimizer(config, model):
"""Returns an optimizer object of :class:`torch.optim.Optimizer` constructed from `config`,
'model' and 'params'.
:param config: A python dict or a :class:`colossalai.context.Config` object
containing information used in the construction of the return object
:type config: dict or :class:`colossalai.context.Config`
:param model: A model containing parameters for the optimizer
:type model: :class:`nn.Module`
:return: An object of :class:`torch.optim.Optimizer`
:rtype: :class:`torch.optim.Optimizer`
"""
config_ = config.copy()
config_['params'] = model.parameters()
return build_from_registry(config_, OPTIMIZERS)
def build_gradient_handler(config, model, optimizer):
"""Returns a gradient handler object of :class:`BaseGradientHandler` constructed from `config`,
`model` and `optimizer`.
:param config: A python dict or a :class:`colossalai.context.Config` object
containing information used in the construction of the return object
:type config: dict or :class:`colossalai.context.Config`
:param model: A model containing parameters for the gradient handler
:type model: :class:`nn.Module`
:param optimizer: An optimizer object containing parameters for the gradient handler
:type optimizer: :class:`torch.optim.Optimizer`
:return: An object of :class:`colossalai.engine.BaseGradientHandler`
:rtype: :class:`colossalai.engine.BaseGradientHandler`
"""
config_ = config.copy()
config_['model'] = model
config_['optimizer'] = optimizer
return build_from_registry(config_, GRADIENT_HANDLER)
def build_hooks(config, trainer):
"""Returns a hook object of :class:`BaseHook` constructed from `config` and `trainer`.
:param config: A python dict or a :class:`colossalai.context.Config` object
containing information used in the construction of the return object
:type config: dict or :class:`colossalai.context.Config`
:param trainer: A :class:`Trainer` object containing parameters for the hook
:type trainer: :class:`Trainer`
:return: An object of :class:`colossalai.trainer.hooks.BaseHook`
:rtype: :class:`colossalai.trainer.hooks.BaseHook`
"""
config_ = config.copy()
config_['trainer'] = trainer
return build_from_registry(config_, HOOKS)
def build_ophooks(config):
"""Returns a hook object of :class:`BaseOpHook` constructed from `config`.
:param config: A python dict or a :class:`colossalai.context.Config` object
containing information used in the construction of the return object
:type config: dict or :class:`colossalai.context.Config`
:return: An object of :class:`colossalai.trainer.hooks.BaseOpHook`
:rtype: :class:`colossalai.trainer.hooks.BaseOpHook`
"""
config_ = config.copy()
return build_from_registry(config_, OPHOOKS)
def build_transform(config):
"""Returns a transformation object of :class:`torchvision.transforms` constructed
from `config`.
:param config: A python dict or a :class:`colossalai.context.Config` object
containing information used in the construction of the return object
:type config: dict or :class:`colossalai.context.Config`
:return: An object of :class:`torchvision.transforms`
:rtype: :class:`torchvision.transforms`
"""
return build_from_registry(config, TRANSFORMS)
def build_data_sampler(config, dataset):
"""Returns a data sampler object of :class:`colossalai.nn.data.sampler.BaseSampler`
constructed from `config`.
:param config: A python dict or a :class:`colossalai.context.Config` object
containing information used in the construction of the return object
:type config: dict or :class:`colossalai.context.Config`
:param dataset: An object of :class:`torch.utils.data.Dataset` containing information
used in the construction of the return object
:type dataset: :class:`torch.utils.data.Dataset`
:return: An object of :class:`colossalai.utils.data_sampler.BaseSampler`
:rtype: :class:`colossalai.utils.data_sampler.BaseSampler`
"""
config_ = config.copy()
config_['dataset'] = dataset
return build_from_registry(config_, DATA_SAMPLERS)
def build_lr_scheduler(config, optimizer):
"""Returns a learning rate scheduler object of :class:`torch.optim.lr_scheduler`
constructed from `config`, `optimizer`, `total_steps` and `num_steps_per_epoch`.
:param config: A python dict or a :class:`colossalai.context.Config` object
containing information used in the construction of the return object
:type config: dict or :class:`colossalai.context.Config`
:param optimizer: An optimizer object containing parameters for the learning rate
scheduler
:type optimizer: :class:`torch.optim.Optimizer`
:return: An object of :class:`torch.optim.lr_scheduler`
:rtype: :class:`torch.optim.lr_scheduler`
"""
config_ = config.copy()
config_['optimizer'] = optimizer
return build_from_registry(config_, LR_SCHEDULERS)
def build_schedule(config):
"""Returns a schedule of :class:`colossalai.engine.schedule.BaseSchedule`.
:param config: A python dict or a :class:`colossalai.context.Config` object
containing information used in the construction of the return object
:type config: dict or :class:`colossalai.context.Config`
:return: An object of :class:`colossalai.engine.schedule.BaseSchedule`
:rtype: :class:`colossalai.engine.schedule.BaseSchedule`
"""
return build_from_registry(config, SCHEDULE)