Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

174 lines
5.9 KiB

import time
from copy import deepcopy
from typing import Callable, Tuple
import numpy as np
import torch
import torch.nn as nn
from transformers import GPT2Config, GPT2LMHeadModel
from colossalai.auto_parallel.checkpoint import CheckpointSolverRotor
from colossalai.fx import metainfo_trace
def bench(
gm: torch.fx.GraphModule, criterion: torch.nn.Module, data_gen: Callable, num_steps: int = 5
) -> Tuple[int, int]:
"""Benchmarking a given graph module
Args:
gm (torch.fx.GraphModule): The graph module to benchmark.
criterion (torch.nn.Module): Loss function.
data_gen (Callable): Data generator.
num_steps (int, optional): Number of test steps. Defaults to 5.
Returns:
Tuple[int, int]: peak memory in MB and step time in MS.
"""
gm.train()
gm.cuda()
step_time = float("inf")
torch.cuda.synchronize()
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
cached = torch.cuda.max_memory_allocated(device="cuda")
try:
for _ in range(num_steps):
args, label = data_gen()
output, loss = None, None
torch.cuda.synchronize(device="cuda")
start = time.time()
output = gm(*args)
loss = criterion(output, label)
loss.backward()
torch.cuda.synchronize(device="cuda")
step_time = min(step_time, time.time() - start)
for child in gm.children():
for param in child.parameters():
param.grad = None
del args, label, output, loss
except:
del args, label, output, loss
gm.to("cpu")
torch.cuda.empty_cache()
peak_mem = (torch.cuda.max_memory_allocated(device="cuda") - cached) / 1024**2
return peak_mem, step_time * 1.0e3
def bench_rotor(
gm: torch.fx.GraphModule,
criterion: torch.nn.Module,
data_gen: Callable,
num_steps: int = 5,
sample_points: int = 20,
free_memory: int = torch.cuda.mem_get_info()[0],
start_factor: int = 4,
) -> Tuple[np.array, list, list]:
"""Auto Checkpoint Rotor Algorithm benchmarking
Benchmarks the Auto Checkpoint Rotor Algorithm for a given graph module and data.
Args:
gm (torch.fx.GraphModule): The graph module to benchmark.
criterion (torch.nn.Module): Loss function.
data_gen (Callable): Data generator.
num_steps (int, optional): Number of test steps. Defaults to 5.
sample_points (int, optional): Number of sample points. Defaults to 20.
free_memory (int, optional): Max memory budget in Byte. Defaults to torch.cuda.mem_get_info()[0].
start_factor (int, optional): Start memory budget factor for benchmark, the start memory budget
will be free_memory / start_factor. Defaults to 4.
Returns:
Tuple[np.array, list, list]: return budgets vector (MB), peak memory vector (MB), step time vector (MS).
"""
peak_hist, step_hist = [], []
raw_graph = deepcopy(gm.graph)
for budget in np.linspace(free_memory // start_factor, free_memory, sample_points):
gm = metainfo_trace(gm, *data_gen()[0])
solver = CheckpointSolverRotor(gm.graph, free_memory=budget)
try:
gm.graph = solver.solve(verbose=False)
peak_memory, step_time = bench(gm, criterion, data_gen, num_steps=num_steps)
except:
peak_memory, step_time = budget / 1024**2, float("inf")
peak_hist.append(peak_memory)
step_hist.append(step_time)
gm.graph = deepcopy(raw_graph)
return np.linspace(free_memory // start_factor, free_memory, sample_points) / 1024**2, peak_hist, step_hist
class GPTLMModel(nn.Module):
"""
GPT Model
"""
def __init__(
self,
hidden_size=768,
num_layers=12,
num_attention_heads=12,
max_seq_len=1024,
vocab_size=50257,
checkpoint=False,
):
super().__init__()
self.checkpoint = checkpoint
self.model = GPT2LMHeadModel(
GPT2Config(
n_embd=hidden_size,
n_layer=num_layers,
n_head=num_attention_heads,
n_positions=max_seq_len,
n_ctx=max_seq_len,
vocab_size=vocab_size,
)
)
if checkpoint:
self.model.gradient_checkpointing_enable()
def forward(self, input_ids, attention_mask):
# Only return lm_logits
return self.model(input_ids=input_ids, attention_mask=attention_mask, use_cache=not self.checkpoint)[0]
class GPTLMLoss(nn.Module):
"""
GPT Loss
"""
def __init__(self):
super().__init__()
self.loss_fn = nn.CrossEntropyLoss()
def forward(self, logits, labels):
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
return self.loss_fn(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
def gpt2_medium(checkpoint=False):
return GPTLMModel(hidden_size=1024, num_layers=24, num_attention_heads=16, checkpoint=checkpoint)
def gpt2_xl(checkpoint=False):
return GPTLMModel(hidden_size=1600, num_layers=48, num_attention_heads=32, checkpoint=checkpoint)
def gpt2_6b(checkpoint=False):
return GPTLMModel(hidden_size=4096, num_layers=30, num_attention_heads=16, checkpoint=checkpoint)
def data_gen_gpt2(batch_size, seq_len, vocab_size, device="cuda:0"):
"""
Generate random data for gpt2 benchmarking
"""
input_ids = torch.randint(0, vocab_size, (batch_size, seq_len), device=device)
attention_mask = torch.ones_like(input_ids, device=device)
return (input_ids, attention_mask), attention_mask
def data_gen_resnet(batch_size, shape, device="cuda:0"):
"""
Generate random data for resnet benchmarking
"""
data = torch.empty(batch_size, *shape, device=device)
label = torch.empty(batch_size, dtype=torch.long, device=device).random_(1000)
return (data,), label