mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
210 lines
9.3 KiB
210 lines
9.3 KiB
# modified from https://github.com/NVIDIA/apex/blob/master/apex/optimizers/fused_sgd.py
|
|
import torch
|
|
from torch.optim.optimizer import Optimizer, required
|
|
|
|
from colossalai.registry import OPTIMIZERS
|
|
from colossalai.utils import multi_tensor_applier
|
|
|
|
|
|
@OPTIMIZERS.register_module
|
|
class FusedSGD(Optimizer):
|
|
r"""Implements stochastic gradient descent (optionally with momentum).
|
|
|
|
Currently GPU-only. Requires ColossalAI to be installed via
|
|
``pip install .``.
|
|
|
|
This version of fused SGD implements 2 fusions.
|
|
|
|
* Fusion of the SGD update's elementwise operations
|
|
* A multi-tensor apply launch that batches the elementwise updates applied to all the model's parameters into one or a few kernel launches.
|
|
|
|
:class:`colossalai.nn.optimizer.FusedSGD` may be used as a drop-in replacement for ``torch.optim.SGD``
|
|
|
|
:class:`colossalai.nn.optimizer.FusedSGD` may be used with or without Amp.
|
|
|
|
Nesterov momentum is based on the formula from
|
|
`On the importance of initialization and momentum in deep learning`__.
|
|
|
|
Args:
|
|
params (iterable): iterable of parameters to optimize or dicts defining
|
|
parameter groups
|
|
lr (float): learning rate
|
|
momentum (float, optional): momentum factor (default: 0)
|
|
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
|
|
dampening (float, optional): dampening for momentum (default: 0)
|
|
nesterov (bool, optional): enables Nesterov momentum (default: False)
|
|
|
|
__ http://www.cs.toronto.edu/%7Ehinton/absps/momentum.pdf
|
|
|
|
.. note::
|
|
The implementation of SGD with Momentum/Nesterov subtly differs from
|
|
Sutskever et. al. and implementations in some other frameworks.
|
|
Considering the specific case of Momentum, the update can be written as
|
|
|
|
.. math::
|
|
v = \rho * v + g \\
|
|
p = p - lr * v
|
|
|
|
where p, g, v and :math:`\rho` denote the parameters, gradient,
|
|
velocity, and momentum respectively.
|
|
This is in contrast to Sutskever et. al. and
|
|
other frameworks which employ an update of the form
|
|
|
|
.. math::
|
|
v = \rho * v + lr * g \\
|
|
p = p - v
|
|
|
|
The Nesterov version is analogously modified.
|
|
"""
|
|
|
|
def __init__(self,
|
|
params,
|
|
lr=required,
|
|
momentum=0,
|
|
dampening=0,
|
|
weight_decay=0,
|
|
nesterov=False,
|
|
wd_after_momentum=False,
|
|
materialize_master_grads=True,
|
|
set_grad_none=False):
|
|
if lr is not required and lr < 0.0:
|
|
raise ValueError("Invalid learning rate: {}".format(lr))
|
|
if momentum < 0.0:
|
|
raise ValueError("Invalid momentum value: {}".format(momentum))
|
|
if weight_decay < 0.0:
|
|
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
|
|
|
|
defaults = dict(lr=lr, momentum=momentum, dampening=dampening, weight_decay=weight_decay, nesterov=nesterov)
|
|
if nesterov and (momentum <= 0 or dampening != 0):
|
|
raise ValueError("Nesterov momentum requires a momentum and zero dampening")
|
|
super(FusedSGD, self).__init__(params, defaults)
|
|
|
|
self.wd_after_momentum = wd_after_momentum
|
|
self.materialize_master_grads = materialize_master_grads
|
|
self.most_recent_scale = 1.0
|
|
self.scale_set_by_backward = False
|
|
self.set_grad_none = set_grad_none
|
|
|
|
if multi_tensor_applier.available:
|
|
import colossal_C
|
|
# Skip buffer
|
|
self._dummy_overflow_buf = torch.tensor([0],
|
|
dtype=torch.int,
|
|
device=self.param_groups[0]["params"][0].device)
|
|
self.multi_tensor_sgd = colossal_C.multi_tensor_sgd
|
|
else:
|
|
raise RuntimeError('FusedSGD requires cuda extensions')
|
|
|
|
def __setstate__(self, state):
|
|
super(FusedSGD, self).__setstate__(state)
|
|
for group in self.param_groups:
|
|
group.setdefault('nesterov', False)
|
|
|
|
def zero_grad(self):
|
|
if self.set_grad_none:
|
|
for group in self.param_groups:
|
|
for p in group['params']:
|
|
p.grad = None
|
|
else:
|
|
super(FusedSGD, self).zero_grad()
|
|
|
|
def get_momentums(self, params):
|
|
momentums = []
|
|
first_run = True
|
|
for p in params:
|
|
param_state = self.state[p]
|
|
# torch.optim.SGD initializes momentum in the main loop, we have
|
|
# to do it here, and track whether or not we've done so, so that
|
|
# momentum application can be skipped in the main kernel.
|
|
if 'momentum_buffer' not in param_state:
|
|
first_run = True
|
|
buf = param_state['momentum_buffer'] = torch.zeros_like(p.data)
|
|
momentums.append(buf)
|
|
else:
|
|
first_run = False
|
|
momentums.append(param_state['momentum_buffer'])
|
|
return momentums, first_run
|
|
|
|
def step(self, closure=None):
|
|
"""Performs a single optimization step.
|
|
|
|
Arguments:
|
|
closure (callable, optional): A closure that reevaluates the model
|
|
and returns the loss.
|
|
"""
|
|
loss = None
|
|
if closure is not None:
|
|
loss = closure()
|
|
|
|
explicit_master_params = (hasattr(self, "_amp_stash") and hasattr(self._amp_stash, "fp32_from_fp16_groups"))
|
|
|
|
for gid, group in enumerate(self.param_groups):
|
|
weight_decay = group['weight_decay']
|
|
momentum = group['momentum']
|
|
dampening = group['dampening']
|
|
nesterov = group['nesterov']
|
|
|
|
# For each group, there are 3 possible combinations we need to consider:
|
|
# grad_type, param_to_update_type, momentum_type, requires_fp16_model_copy
|
|
# 1. fp16, fp16, fp16, No
|
|
# 2. fp32, fp32, fp32, No
|
|
# 3. fp16, fp32, fp32, Yes
|
|
|
|
first_runs = [True, True]
|
|
|
|
# I think a bit of code divergence in exchange for naming clarity is worthwhile
|
|
if explicit_master_params:
|
|
stash = self._amp_stash
|
|
|
|
fp32_params = [p for p in stash.fp32_from_fp32_groups[gid] if p.grad is not None]
|
|
fp32_grads = [p.grad for p in stash.fp32_from_fp32_groups[gid] if p.grad is not None]
|
|
fp32_momentums, first_runs[1] = self.get_momentums(fp32_params)
|
|
|
|
if self.materialize_master_grads:
|
|
fp16_model_params = [
|
|
p for i, p in enumerate(stash.fp16_groups[gid])
|
|
if stash.fp32_from_fp16_groups[gid][i].grad is not None
|
|
]
|
|
fp32_from_fp16_grads = [p.grad for p in stash.fp32_from_fp16_groups[gid] if p.grad is not None]
|
|
fp32_from_fp16_params = [p for p in stash.fp32_from_fp16_groups[gid] if p.grad is not None]
|
|
fp32_from_fp16_momentums, first_runs[0] = self.get_momentums(fp32_from_fp16_params)
|
|
|
|
fp16_set = [
|
|
fp32_from_fp16_grads, fp32_from_fp16_params, fp32_from_fp16_momentums, fp16_model_params
|
|
]
|
|
else:
|
|
fp16_model_params = [p for p in stash.fp16_groups[gid] if p.grad is not None]
|
|
fp16_model_grads = [p.grad for p in stash.fp16_groups[gid] if p.grad is not None]
|
|
fp32_from_fp16_params = [
|
|
p for i, p in enumerate(stash.fp32_from_fp16_groups[gid])
|
|
if stash.fp16_groups[gid][i].grad is not None
|
|
]
|
|
fp32_from_fp16_momentums, first_runs[0] = self.get_momentums(fp32_from_fp16_params)
|
|
|
|
fp16_set = [fp16_model_grads, fp32_from_fp16_params, fp32_from_fp16_momentums, fp16_model_params]
|
|
|
|
launch_sets = [fp16_set, [fp32_grads, fp32_params, fp32_momentums]]
|
|
else:
|
|
fp16_params = [p for p in group['params'] if (p.dtype == torch.float16 and p.grad is not None)]
|
|
fp16_grads = [p.grad for p in group['params'] if (p.dtype == torch.float16 and p.grad is not None)]
|
|
fp16_momentums, first_runs[0] = self.get_momentums(fp16_params)
|
|
|
|
fp32_params = [p for p in group['params'] if (p.dtype == torch.float32 and p.grad is not None)]
|
|
fp32_grads = [p.grad for p in group['params'] if (p.dtype == torch.float32 and p.grad is not None)]
|
|
fp32_momentums, first_runs[1] = self.get_momentums(fp32_params)
|
|
|
|
launch_sets = [[fp16_grads, fp16_params, fp16_momentums], [fp32_grads, fp32_params, fp32_momentums]]
|
|
|
|
for s, (launch_set, first_run) in enumerate(zip(launch_sets, first_runs)):
|
|
assert len(launch_set[0]) == len(launch_set[1])
|
|
assert len(launch_set[0]) == len(launch_set[2])
|
|
if len(launch_set[0]) > 0:
|
|
multi_tensor_applier(self.multi_tensor_sgd, self._dummy_overflow_buf, launch_set, weight_decay,
|
|
momentum, dampening, group['lr'], nesterov, first_run, self.wd_after_momentum,
|
|
1.0 / self.most_recent_scale)
|
|
|
|
self.most_recent_scale = 1.0
|
|
self.scale_set_by_backward = False
|
|
|
|
return loss
|