mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
189 lines
6.6 KiB
189 lines
6.6 KiB
import pytest |
|
import torch |
|
import torch.distributed as dist |
|
|
|
import colossalai |
|
from colossalai.booster import Booster |
|
from colossalai.booster.plugin import LowLevelZeroPlugin |
|
from colossalai.booster.plugin.low_level_zero_plugin import LowLevelZeroModel |
|
from colossalai.legacy.moe.manager import MOE_MANAGER |
|
|
|
# from colossalai.shardformer.layer.moe import apply_load_balance |
|
from colossalai.tensor.moe_tensor.api import is_moe_tensor |
|
from colossalai.testing import rerun_if_address_is_in_use, spawn |
|
from tests.test_moe.moe_utils import MoeGradientHandler, MoeModel |
|
|
|
|
|
def split_ddp_grad(grad, world_size): |
|
with torch.no_grad(): |
|
grad = grad.clone().detach().flatten() |
|
padding_size = (world_size - grad.numel() % world_size) % world_size |
|
if padding_size > 0: |
|
grad = torch.nn.functional.pad(grad, [0, padding_size]) |
|
splited_grad = grad.split(grad.numel() // world_size) |
|
return splited_grad |
|
|
|
|
|
def run_fwd_bwd(model, data, label, criterion, optimizer, enable_autocast=False): |
|
model.train() |
|
with torch.cuda.amp.autocast(enabled=enable_autocast): |
|
if criterion: |
|
y = model(data) |
|
loss = criterion(y, label) |
|
else: |
|
loss = model(data, label) |
|
loss = loss.float() |
|
|
|
if isinstance(model, LowLevelZeroModel): |
|
optimizer.backward(loss) |
|
else: |
|
loss.backward() |
|
return y |
|
|
|
|
|
def run_zero_optim_test(local_rank, world_size, stage=1): |
|
criterion = torch.nn.CrossEntropyLoss() |
|
|
|
MOE_MANAGER.__init__() |
|
MOE_MANAGER.setup( |
|
parallel="EP", |
|
) |
|
zero_model = MoeModel(enable_load_balance=True) |
|
zero_optimizer = torch.optim.Adam(zero_model.parameters()) |
|
plugin = LowLevelZeroPlugin(stage=stage, precision="bf16", verbose=True) |
|
booster = Booster(plugin=plugin) |
|
zero_model, zero_optimizer, _, _, _ = booster.boost(zero_model, zero_optimizer) |
|
|
|
MOE_MANAGER.__init__() |
|
MOE_MANAGER.setup(parallel="EP") |
|
torch_model = MoeModel() |
|
for zero_param, torch_param in zip(zero_model.parameters(), torch_model.parameters()): |
|
torch_param.data.copy_(zero_param.data) |
|
torch_optimizer = torch.optim.Adam(torch_model.parameters()) |
|
torch_model = torch_model.cuda().bfloat16() |
|
grad_handler = MoeGradientHandler(torch_model) |
|
|
|
# run to update expert load |
|
data = torch.randn(16, 4).cuda().bfloat16() / 1000 / (local_rank + 1) |
|
label = torch.randint(0, 4, (16,)).cuda() |
|
|
|
# run torch model twice |
|
run_fwd_bwd(torch_model, data, label, criterion, None) |
|
grad_handler.handle_gradient() |
|
torch_optimizer.step() |
|
torch_optimizer.zero_grad() |
|
run_fwd_bwd(torch_model, data, label, criterion, None) |
|
grad_handler.handle_gradient() |
|
|
|
# get optim and load status in zero model |
|
run_fwd_bwd(zero_model, data, label, criterion, zero_optimizer) |
|
zero_optimizer.step() |
|
zero_optimizer.zero_grad() |
|
with torch.no_grad(): |
|
origin_out = zero_model(data) |
|
|
|
# load balance |
|
apply_load_balance(zero_model, zero_optimizer) |
|
|
|
# run again to test |
|
zero_out = run_fwd_bwd(zero_model, data, label, criterion, zero_optimizer) |
|
torch.allclose(origin_out, zero_out) |
|
|
|
# assert optim |
|
torch_optimizer.step() |
|
torch_out = run_fwd_bwd(torch_model, data, label, criterion, None) |
|
zero_optimizer.step() |
|
zero_out = run_fwd_bwd(zero_model, data, label, criterion, zero_optimizer) |
|
assert torch.allclose(zero_out, torch_out, atol=3e-5), f"zero_out:{zero_out}\ntorch_out{torch_out}" |
|
|
|
|
|
def run_hybrid_zero_optim_test(local_rank, world_size, stage=1): |
|
criterion = torch.nn.CrossEntropyLoss() |
|
data = torch.randn(16, 4).cuda() |
|
label = torch.randint(0, 4, (16,)).cuda() |
|
|
|
MOE_MANAGER.__init__() |
|
MOE_MANAGER.setup(parallel=None) |
|
torch_model = MoeModel() |
|
torch_optimizer = torch.optim.Adam(torch_model.parameters()) |
|
torch_model = torch_model.cuda() |
|
|
|
MOE_MANAGER.__init__() |
|
MOE_MANAGER.setup( |
|
max_ep_size=2, |
|
use_ep_inside=False, |
|
parallel="EP", |
|
) |
|
zero_model = MoeModel(enable_load_balance=True) |
|
extra_dp_group = MOE_MANAGER.parallel_info_dict[2].dp_group |
|
ep_rank = dist.get_rank(MOE_MANAGER.parallel_info_dict[2].ep_group) |
|
ep_size = MOE_MANAGER.parallel_info_dict[2].ep_size |
|
for zero_param, torch_param in zip(zero_model.parameters(), torch_model.parameters()): |
|
if is_moe_tensor(zero_param): |
|
num_expert = torch_param.data.shape[0] |
|
zero_param.data.copy_( |
|
torch_param.data[ep_rank * (num_expert // ep_size) : (ep_rank + 1) * (num_expert // ep_size)] |
|
.detach() |
|
.clone() |
|
) |
|
else: |
|
zero_param.data.copy_(torch_param.data.detach().clone()) |
|
zero_optimizer = torch.optim.Adam(zero_model.parameters()) |
|
plugin = LowLevelZeroPlugin(stage=stage, precision="fp32") |
|
plugin.zero_optim_kwargs["moe_extra_dp_process_group"] = extra_dp_group |
|
booster = Booster(plugin=plugin) |
|
zero_model, zero_optimizer, _, _, _ = booster.boost(zero_model, zero_optimizer) |
|
|
|
# run torch for twice |
|
run_fwd_bwd(torch_model, data, label, criterion, None) |
|
torch_optimizer.step() |
|
torch_optimizer.zero_grad() |
|
run_fwd_bwd(torch_model, data, label, criterion, None) |
|
torch_optimizer.step() |
|
|
|
# run zero |
|
run_fwd_bwd(zero_model, data, label, criterion, zero_optimizer) |
|
zero_optimizer.step() |
|
zero_optimizer.zero_grad() |
|
with torch.no_grad(): |
|
origin_out = zero_model(data) |
|
|
|
# load balance |
|
apply_load_balance(zero_model, zero_optimizer) |
|
|
|
# assert out |
|
zero_out = run_fwd_bwd(zero_model, data, label, criterion, zero_optimizer) |
|
torch.allclose(origin_out, zero_out) |
|
|
|
# assert optim |
|
zero_optimizer.step() |
|
zero_out = run_fwd_bwd(zero_model, data, label, criterion, zero_optimizer) |
|
torch_out = run_fwd_bwd(torch_model, data, label, criterion, None) |
|
# TODO: high atol, check if bug exists |
|
assert torch.allclose(zero_out, torch_out, atol=8e-4), f"zero_out:{zero_out}\ntorch_out{torch_out}" |
|
|
|
|
|
def run_dist(rank, world_size, port): |
|
colossalai.launch( |
|
rank=rank, |
|
world_size=world_size, |
|
host="localhost", |
|
port=port, |
|
backend="nccl", |
|
) |
|
run_zero_optim_test(rank, world_size, stage=1) |
|
run_zero_optim_test(rank, world_size, stage=2) |
|
run_hybrid_zero_optim_test(rank, world_size, stage=1) |
|
run_hybrid_zero_optim_test(rank, world_size, stage=2) |
|
|
|
|
|
@pytest.mark.skip(reason="moe need to be refactored") |
|
@pytest.mark.dist |
|
@pytest.mark.parametrize("world_size", [4]) |
|
@rerun_if_address_is_in_use() |
|
def test_moe_load_balance(world_size): |
|
spawn(run_dist, world_size) |
|
|
|
|
|
if __name__ == "__main__": |
|
test_moe_load_balance(world_size=4)
|
|
|