Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

81 lines
2.7 KiB

import pytest
import torch
import torch.distributed as dist
import torch.nn as nn
import colossalai
from colossalai.accelerator import get_accelerator
from colossalai.legacy.moe.manager import MOE_MANAGER
# from colossalai.shardformer.layer.moe.layers import SparseMLP
from colossalai.testing import assert_equal_in_group, rerun_if_address_is_in_use, spawn
from tests.test_moe.moe_utils import MoeGradientHandler
BATCH_SIZE = 4
DIM = 16
def run_test(rank, world_size, port):
colossalai.launch(
rank=rank,
world_size=world_size,
host="localhost",
port=port,
backend="nccl",
)
MOE_MANAGER.setup(parallel="EP") # MOE initialization
num_experts_list = [1, 2, 4]
layer_list = []
for num_experts in num_experts_list:
moe_layer = SparseMLP(
hidden_size=DIM,
intermediate_size=DIM * 4,
num_experts=num_experts,
router_top_k=1,
router_noisy_policy="Jitter",
)
layer_list.append(moe_layer)
model = nn.ModuleList(layer_list)
model = model.to(get_accelerator().get_current_device())
dist_dict = MOE_MANAGER.parallel_info_dict
assert_equal_in_group(layer_list[0].experts.wi.data, dist_dict[1].dp_group)
assert_equal_in_group(layer_list[0].experts.wo.data, dist_dict[1].dp_group)
assert_equal_in_group(layer_list[1].experts.wi.data, dist_dict[2].dp_group)
assert_equal_in_group(layer_list[1].experts.wo.data, dist_dict[2].dp_group)
assert_equal_in_group(layer_list[2].experts.wi.data, dist_dict[4].dp_group)
assert_equal_in_group(layer_list[2].experts.wo.data, dist_dict[4].dp_group)
# MoE model synchronization passed
grad_handler = MoeGradientHandler(model, 0)
rank = dist.get_rank()
torch.cuda.manual_seed(78 + rank)
data = torch.randn(BATCH_SIZE, DIM, device=get_accelerator().get_current_device())
grad = torch.randn_like(data)
MOE_MANAGER.reset_loss()
for layer in layer_list:
data = layer(data)
data.backward(grad)
grad_handler.handle_gradient()
assert_equal_in_group(layer_list[0].experts.wi.grad, dist_dict[1].dp_group)
assert_equal_in_group(layer_list[0].experts.wo.grad, dist_dict[1].dp_group)
assert_equal_in_group(layer_list[1].experts.wi.grad, dist_dict[2].dp_group)
assert_equal_in_group(layer_list[1].experts.wo.grad, dist_dict[2].dp_group)
assert_equal_in_group(layer_list[2].experts.wi.grad, dist_dict[4].dp_group)
assert_equal_in_group(layer_list[2].experts.wo.grad, dist_dict[4].dp_group)
# MoE grad handler test passed
@pytest.mark.skip(reason="moe need to be refactored")
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_grad_handler():
spawn(run_test, 4)
if __name__ == "__main__":
test_grad_handler()