mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
136 lines
5.2 KiB
136 lines
5.2 KiB
import torch |
|
import torch.distributed as dist |
|
import torch.nn as nn |
|
from torch.distributed import ProcessGroup |
|
|
|
from colossalai.booster.plugin.low_level_zero_plugin import LowLevelZeroModel |
|
from colossalai.legacy.engine.gradient_handler._base_gradient_handler import BaseGradientHandler |
|
from colossalai.legacy.engine.gradient_handler.utils import bucket_allreduce |
|
from colossalai.legacy.moe.manager import MOE_MANAGER |
|
from colossalai.legacy.moe.utils import get_moe_epsize_param_dict |
|
from colossalai.legacy.registry import GRADIENT_HANDLER |
|
from colossalai.tensor.moe_tensor.api import get_ep_group, get_ep_size, set_moe_tensor_ep_group |
|
|
|
|
|
def delete_moe_info(model): |
|
for _, param in model.named_parameters(): |
|
if hasattr(param, "ep_group"): |
|
delattr(param, "ep_group") |
|
|
|
|
|
class MoeModel(nn.Module): |
|
def __init__(self, ep_group: ProcessGroup = None): |
|
super().__init__() |
|
self.test_embed = nn.Linear(4, 16, bias=False) |
|
self.w1 = torch.nn.Parameter(torch.randn(16, 8)) |
|
if ep_group: |
|
set_moe_tensor_ep_group(self.w1, ep_group) |
|
|
|
def forward(self, x): |
|
x = self.test_embed(x) |
|
x = torch.matmul(x, self.w1) |
|
|
|
return x |
|
|
|
|
|
@GRADIENT_HANDLER.register_module |
|
class MoeGradientHandler(BaseGradientHandler): |
|
"""A helper class to handle all-reduce operations in a data parallel group and |
|
moe model parallel. A all-reduce collective communication will be operated in |
|
:func:`handle_gradient` among a data parallel group. |
|
For better performance, it bucketizes the gradients of all parameters that are |
|
the same type to improve the efficiency of communication. |
|
|
|
Args: |
|
model (Module): Model where the gradients accumulate. |
|
optimizer (Optimizer): Optimizer for updating the parameters. |
|
""" |
|
|
|
def __init__(self, model, optimizer=None): |
|
super().__init__(model, optimizer) |
|
|
|
def handle_gradient(self): |
|
"""A method running an all-reduce operation in a data parallel group. |
|
Then running an all-reduce operation for all parameters in experts |
|
across moe model parallel group |
|
""" |
|
if dist.get_world_size() > 1: |
|
epsize_param_dict = get_moe_epsize_param_dict(self._model) |
|
|
|
# epsize is 1, indicating the params are replicated among processes in data parallelism |
|
# use the ParallelMode.DATA to get data parallel group |
|
# reduce gradients for all parameters in data parallelism |
|
if 1 in epsize_param_dict: |
|
bucket_allreduce(param_list=epsize_param_dict[1]) |
|
|
|
for ep_size in epsize_param_dict: |
|
if ep_size != 1 and ep_size != MOE_MANAGER.world_size: |
|
bucket_allreduce( |
|
param_list=epsize_param_dict[ep_size], group=MOE_MANAGER.parallel_info_dict[ep_size].dp_group |
|
) |
|
|
|
|
|
def assert_not_equal_in_group(tensor, process_group=None): |
|
# all gather tensors from different ranks |
|
world_size = dist.get_world_size(process_group) |
|
tensor_list = [torch.empty_like(tensor) for _ in range(world_size)] |
|
dist.all_gather(tensor_list, tensor, group=process_group) |
|
|
|
# check if they are equal one by one |
|
for i in range(world_size - 1): |
|
a = tensor_list[i] |
|
b = tensor_list[i + 1] |
|
assert not torch.allclose(a, b), ( |
|
f"expected tensors on rank {i} and {i + 1} not to be equal " f"but they are, {a} vs {b}" |
|
) |
|
|
|
|
|
def run_fwd_bwd(model, data, label, criterion, optimizer, enable_autocast=False): |
|
model.train() |
|
with torch.cuda.amp.autocast(enabled=enable_autocast): |
|
if criterion: |
|
y = model(data) |
|
loss = criterion(y, label) |
|
else: |
|
loss = model(data, label) |
|
loss = loss.float() |
|
|
|
if isinstance(model, LowLevelZeroModel): |
|
optimizer.backward(loss) |
|
else: |
|
loss.backward() |
|
return y |
|
|
|
|
|
def sync_local_from_ep(local_model, ep_model, assert_grad_flag: bool = False) -> None: |
|
"""Sync the parameters of tp model from ep model |
|
|
|
Args: |
|
local_model (MoeModule) |
|
ep_model (MoeModule) |
|
""" |
|
for (local_name, local_param), (ep_name, ep_param) in zip( |
|
local_model.named_parameters(), ep_model.named_parameters() |
|
): |
|
if "experts" not in local_name: |
|
if assert_grad_flag: |
|
assert torch.allclose(local_param, ep_param), f"local_param: {local_param}, ep_param: {ep_param}" |
|
assert torch.allclose(local_param.grad, ep_param.grad) |
|
else: |
|
local_param.data.copy_(ep_param.data) |
|
continue |
|
|
|
# gather param from ep model |
|
param_list = [torch.zeros_like(ep_param) for _ in range(get_ep_size(ep_param))] |
|
dist.all_gather(param_list, ep_param, group=get_ep_group(ep_param)) |
|
all_param = torch.cat(param_list, dim=0) |
|
if assert_grad_flag: |
|
grad_list = [torch.zeros_like(ep_param) for _ in range(get_ep_size(ep_param))] |
|
dist.all_gather(grad_list, ep_param.grad, group=get_ep_group(ep_param)) |
|
all_grad = torch.cat(grad_list, dim=0) |
|
|
|
if assert_grad_flag: |
|
assert torch.allclose(local_param, all_param) |
|
assert torch.allclose(local_param.grad, all_grad) |
|
else: |
|
local_param.data.copy_(all_param.data)
|
|
|