You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/utils/safetensors.py

84 lines
2.6 KiB

# a python safetensors serializer modified from https://github.com/huggingface/safetensors/blob/41bd1acf38ad28ac559522d40596c6c802f79453/safetensors/src/tensor.rs#L214
import json
from dataclasses import asdict, dataclass
from typing import Dict, List, Optional, Tuple
import torch
from safetensors.torch import _TYPES
try:
from tensornvme.async_file_io import AsyncFileWriter
except ModuleNotFoundError:
raise ModuleNotFoundError("Please install tensornvme to use NVMeOptimizer")
_TYPES_INV = {v: k for k, v in _TYPES.items()}
@dataclass
class TensorInfo:
dtype: str
shape: List[int]
data_offsets: Tuple[int, int]
@dataclass
class PreparedData:
n: int
header_bytes: bytes
offset: int
def prepare(data: Dict[str, torch.Tensor]) -> Tuple[PreparedData, List[torch.Tensor], List[str]]:
tensors = []
tensor_keys = []
metadata = {}
offset = 0
for name, tensor in data.items():
n = tensor.numel() * tensor.element_size()
tensor_info = TensorInfo(
dtype=_TYPES_INV[tensor.dtype], shape=list(tensor.shape), data_offsets=(offset, offset + n)
)
offset += n
metadata[name] = asdict(tensor_info)
tensors.append(tensor)
tensor_keys.append(name)
metadata_buf = json.dumps(metadata).encode("utf-8")
extra = (8 - len(metadata_buf) % 8) % 8
metadata_buf += b" " * extra
n = len(metadata_buf)
return PreparedData(n=n, header_bytes=metadata_buf, offset=offset), tensors, tensor_keys
def save(f_writer: AsyncFileWriter, state_dict: Dict[str, torch.Tensor]) -> None:
prepared_data, tensors, _ = prepare(state_dict)
n, header_bytes, _ = prepared_data.n, prepared_data.header_bytes, prepared_data.offset
f_writer.write(n.to_bytes(8, byteorder="little"))
f_writer.write(header_bytes)
for tensor in tensors:
f_writer.write_raw(tensor, tensor.data_ptr(), tensor.numel() * tensor.element_size(), f_writer.offset)
def move_and_save(
f_writer: AsyncFileWriter,
state_dict: Dict[str, torch.Tensor],
state_dict_pinned: Optional[Dict[str, torch.Tensor]] = None,
) -> None:
prepared_data, _, tensor_keys = prepare(state_dict)
n, header_bytes, _ = prepared_data.n, prepared_data.header_bytes, prepared_data.offset
f_writer.write(n.to_bytes(8, byteorder="little"))
f_writer.write(header_bytes)
f_writer.register_h2d(len(tensor_keys))
for name in tensor_keys:
if state_dict_pinned:
f_writer.write_tensor(state_dict[name], state_dict_pinned[name])
else:
f_writer.write_tensor(state_dict[name])