mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
421 lines
17 KiB
421 lines
17 KiB
from functools import partial
|
|
from typing import Callable, Dict, List, Union
|
|
|
|
import torch.nn as nn
|
|
from torch import Tensor
|
|
from torch.nn import Module
|
|
|
|
from colossalai.shardformer.layer import (
|
|
FusedRMSNorm,
|
|
Linear1D_Col,
|
|
Linear1D_Row,
|
|
PaddingEmbedding,
|
|
PaddingLMHead,
|
|
RMSNorm,
|
|
VocabParallelEmbedding1D,
|
|
VocabParallelLMHead1D,
|
|
)
|
|
|
|
from ..modeling.llama import LlamaPipelineForwards, get_llama_flash_attention_forward
|
|
from .base_policy import ModulePolicyDescription, Policy, SubModuleReplacementDescription
|
|
|
|
__all__ = ["LlamaPolicy", "LlamaForCausalLMPolicy", "LlamaForSequenceClassificationPolicy"]
|
|
|
|
|
|
class LlamaPolicy(Policy):
|
|
def config_sanity_check(self):
|
|
pass
|
|
|
|
def preprocess(self):
|
|
self.tie_weight = self.tie_weight_check()
|
|
self.origin_attn_implement = self.model.config._attn_implementation
|
|
return self.model
|
|
|
|
def module_policy(self) -> Dict[Union[str, nn.Module], ModulePolicyDescription]:
|
|
from transformers.models.llama.modeling_llama import (
|
|
LlamaAttention,
|
|
LlamaDecoderLayer,
|
|
LlamaFlashAttention2,
|
|
LlamaModel,
|
|
LlamaSdpaAttention,
|
|
)
|
|
|
|
ATTN_IMPLEMENTATION = {
|
|
"eager": LlamaAttention,
|
|
"flash_attention_2": LlamaFlashAttention2,
|
|
"sdpa": LlamaSdpaAttention,
|
|
}
|
|
policy = {}
|
|
|
|
attn_cls = ATTN_IMPLEMENTATION[self.origin_attn_implement]
|
|
embedding_cls = None
|
|
if self.shard_config.enable_tensor_parallelism:
|
|
embedding_cls = VocabParallelEmbedding1D
|
|
else:
|
|
if self.tie_weight:
|
|
embedding_cls = PaddingEmbedding
|
|
|
|
if self.shard_config.enable_fused_normalization:
|
|
norm_cls = FusedRMSNorm
|
|
else:
|
|
norm_cls = RMSNorm
|
|
|
|
sp_mode = self.shard_config.sequence_parallelism_mode or None
|
|
sp_size = self.shard_config.sequence_parallel_size or None
|
|
sp_group = self.shard_config.sequence_parallel_process_group or None
|
|
sp_partial_derived = sp_mode in ["split_gather", "ring"]
|
|
if sp_mode == "ring_attn" and not self.is_causal:
|
|
raise ValueError("Ring attention is only meant for causal language modeling.")
|
|
|
|
tp_size = self.shard_config.tensor_parallel_size
|
|
# Modified by SP and TP
|
|
num_q_heads = self.model.config.num_attention_heads
|
|
num_kv_heads = getattr(self.model.config, "num_key_value_heads", None)
|
|
|
|
if sp_mode == "all_to_all":
|
|
num_q_heads //= sp_size
|
|
decoder_attribute_replacement = {"num_heads": num_q_heads}
|
|
if num_kv_heads:
|
|
num_kv_heads //= sp_size
|
|
decoder_attribute_replacement["num_key_value_heads"] = num_kv_heads
|
|
|
|
policy[attn_cls] = ModulePolicyDescription(
|
|
attribute_replacement=decoder_attribute_replacement,
|
|
)
|
|
if self.shard_config.enable_flash_attention or self.shard_config.enable_sequence_parallelism:
|
|
self.append_or_create_method_replacement(
|
|
description={
|
|
"forward": get_llama_flash_attention_forward(self.shard_config, sp_mode, sp_size, sp_group),
|
|
},
|
|
policy=policy,
|
|
target_key=attn_cls,
|
|
)
|
|
|
|
if self.pipeline_stage_manager is None:
|
|
self.append_or_create_method_replacement(
|
|
description={
|
|
"forward": partial(
|
|
LlamaPipelineForwards.llama_model_forward,
|
|
shard_config=self.shard_config,
|
|
),
|
|
},
|
|
policy=policy,
|
|
target_key=LlamaModel,
|
|
)
|
|
|
|
if self.shard_config.enable_tensor_parallelism:
|
|
assert (
|
|
num_q_heads % tp_size == 0
|
|
), f"The number of attention heads must be divisible by tensor parallel size."
|
|
if hasattr(self.model.config, "num_key_value_heads"):
|
|
assert (
|
|
num_kv_heads >= tp_size and num_kv_heads % tp_size == 0
|
|
), f"The number of key_value heads must be divisible by, and must not be less than tensor parallel size."
|
|
num_q_heads //= tp_size
|
|
decoder_attribute_replacement = {
|
|
"self_attn.hidden_size": self.model.config.hidden_size // tp_size,
|
|
"self_attn.num_heads": num_q_heads,
|
|
}
|
|
if getattr(self.model.config, "num_key_value_heads", False):
|
|
num_kv_heads //= tp_size
|
|
decoder_attribute_replacement["self_attn.num_key_value_heads"] = num_kv_heads
|
|
|
|
policy[LlamaDecoderLayer] = ModulePolicyDescription(
|
|
attribute_replacement=decoder_attribute_replacement,
|
|
sub_module_replacement=[
|
|
SubModuleReplacementDescription(
|
|
suffix="self_attn.q_proj",
|
|
target_module=Linear1D_Col,
|
|
kwargs=dict(seq_parallel_mode=sp_mode, fp8_communication=self.shard_config.fp8_communication),
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="self_attn.k_proj",
|
|
target_module=Linear1D_Col,
|
|
kwargs=dict(seq_parallel_mode=sp_mode, fp8_communication=self.shard_config.fp8_communication),
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="self_attn.v_proj",
|
|
target_module=Linear1D_Col,
|
|
kwargs=dict(seq_parallel_mode=sp_mode, fp8_communication=self.shard_config.fp8_communication),
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="self_attn.o_proj",
|
|
target_module=Linear1D_Row,
|
|
kwargs=dict(seq_parallel_mode=sp_mode, fp8_communication=self.shard_config.fp8_communication),
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="mlp.gate_proj",
|
|
target_module=Linear1D_Col,
|
|
kwargs=dict(seq_parallel_mode=sp_mode, fp8_communication=self.shard_config.fp8_communication),
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="mlp.up_proj",
|
|
target_module=Linear1D_Col,
|
|
kwargs=dict(seq_parallel_mode=sp_mode, fp8_communication=self.shard_config.fp8_communication),
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="mlp.down_proj",
|
|
target_module=Linear1D_Row,
|
|
kwargs=dict(seq_parallel_mode=sp_mode, fp8_communication=self.shard_config.fp8_communication),
|
|
),
|
|
],
|
|
)
|
|
|
|
if embedding_cls is not None:
|
|
self.append_or_create_submodule_replacement(
|
|
description=SubModuleReplacementDescription(
|
|
suffix="embed_tokens",
|
|
target_module=embedding_cls,
|
|
kwargs=(
|
|
{
|
|
"make_vocab_size_divisible_by": self.shard_config.make_vocab_size_divisible_by,
|
|
"fp8_communication": self.shard_config.fp8_communication,
|
|
}
|
|
if self.shard_config.enable_tensor_parallelism
|
|
else {"make_vocab_size_divisible_by": self.shard_config.make_vocab_size_divisible_by}
|
|
),
|
|
),
|
|
policy=policy,
|
|
target_key=LlamaModel,
|
|
)
|
|
|
|
# optimization configuration
|
|
self.append_or_create_submodule_replacement(
|
|
description=[
|
|
SubModuleReplacementDescription(
|
|
suffix="input_layernorm",
|
|
target_module=norm_cls,
|
|
kwargs={"sp_partial_derived": sp_partial_derived},
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="post_attention_layernorm",
|
|
target_module=norm_cls,
|
|
kwargs={"sp_partial_derived": sp_partial_derived},
|
|
),
|
|
],
|
|
policy=policy,
|
|
target_key=LlamaDecoderLayer,
|
|
)
|
|
|
|
self.append_or_create_submodule_replacement(
|
|
description=SubModuleReplacementDescription(
|
|
suffix="norm",
|
|
target_module=norm_cls,
|
|
kwargs={"sp_partial_derived": sp_partial_derived},
|
|
),
|
|
policy=policy,
|
|
target_key=LlamaModel,
|
|
)
|
|
|
|
return policy
|
|
|
|
def postprocess(self):
|
|
return self.model
|
|
|
|
def set_pipeline_forward(self, model_cls: nn.Module, new_forward: Callable, policy: Dict) -> None:
|
|
"""If under pipeline parallel setting, replacing the original forward method of huggingface
|
|
to customized forward method, and add this changing to policy."""
|
|
if self.pipeline_stage_manager is None:
|
|
return
|
|
|
|
stage_manager = self.pipeline_stage_manager
|
|
if self.model.__class__.__name__ == "LlamaModel":
|
|
module = self.model
|
|
else:
|
|
module = self.model.model
|
|
|
|
if stage_manager.is_interleave:
|
|
layers_per_stage = stage_manager.distribute_layers(len(module.layers))
|
|
stage_manager.stage_indices = stage_manager.get_stage_index(layers_per_stage)
|
|
method_replacement = {
|
|
"forward": partial(new_forward, stage_manager=stage_manager, shard_config=self.shard_config)
|
|
}
|
|
|
|
else:
|
|
layers_per_stage = stage_manager.distribute_layers(len(module.layers))
|
|
stage_index = stage_manager.get_stage_index(layers_per_stage)
|
|
method_replacement = {
|
|
"forward": partial(
|
|
new_forward, stage_manager=stage_manager, stage_index=stage_index, shard_config=self.shard_config
|
|
)
|
|
}
|
|
|
|
self.append_or_create_method_replacement(description=method_replacement, policy=policy, target_key=model_cls)
|
|
|
|
def get_held_layers(self) -> List[Module]:
|
|
"""Get pipeline layers for current stage."""
|
|
assert self.pipeline_stage_manager is not None
|
|
|
|
if self.model.__class__.__name__ == "LlamaModel":
|
|
module = self.model
|
|
else:
|
|
module = self.model.model
|
|
stage_manager = self.pipeline_stage_manager
|
|
|
|
held_layers = []
|
|
if stage_manager.is_interleave:
|
|
assert stage_manager.num_model_chunks is not None
|
|
layers_per_stage = stage_manager.distribute_layers(len(module.layers))
|
|
stage_indices = stage_manager.get_stage_index(layers_per_stage)
|
|
if stage_manager.is_first_stage(ignore_chunk=True):
|
|
held_layers.append(module.embed_tokens)
|
|
for start_idx, end_idx in stage_indices:
|
|
held_layers.extend(module.layers[start_idx:end_idx])
|
|
if stage_manager.is_last_stage(ignore_chunk=True):
|
|
held_layers.append(module.norm)
|
|
|
|
else:
|
|
layers_per_stage = stage_manager.distribute_layers(len(module.layers))
|
|
if stage_manager.is_first_stage():
|
|
held_layers.append(module.embed_tokens)
|
|
start_idx, end_idx = stage_manager.get_stage_index(layers_per_stage)
|
|
held_layers.extend(module.layers[start_idx:end_idx])
|
|
if stage_manager.is_last_stage():
|
|
held_layers.append(module.norm)
|
|
|
|
return held_layers
|
|
|
|
|
|
class LlamaModelPolicy(LlamaPolicy):
|
|
def module_policy(self):
|
|
policy = super().module_policy()
|
|
from transformers.models.llama.modeling_llama import LlamaModel
|
|
|
|
if self.pipeline_stage_manager:
|
|
# set None as default
|
|
self.set_pipeline_forward(
|
|
model_cls=LlamaModel, new_forward=LlamaPipelineForwards.llama_model_forward, policy=policy
|
|
)
|
|
return policy
|
|
|
|
def get_held_layers(self) -> List[Module]:
|
|
"""Get pipeline layers for current stage."""
|
|
held_layers = super().get_held_layers()
|
|
return held_layers
|
|
|
|
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
|
"""No shared params in llama model"""
|
|
return []
|
|
|
|
|
|
class LlamaForCausalLMPolicy(LlamaPolicy):
|
|
def module_policy(self):
|
|
from transformers import LlamaForCausalLM
|
|
|
|
self.is_causal = True
|
|
policy = super().module_policy()
|
|
|
|
if self.shard_config.enable_tensor_parallelism:
|
|
# add a new item for causal lm
|
|
new_item = {
|
|
LlamaForCausalLM: ModulePolicyDescription(
|
|
sub_module_replacement=[
|
|
SubModuleReplacementDescription(
|
|
suffix="lm_head",
|
|
target_module=VocabParallelLMHead1D,
|
|
kwargs={
|
|
"gather_output": not self.shard_config.parallel_output,
|
|
"make_vocab_size_divisible_by": self.shard_config.make_vocab_size_divisible_by,
|
|
"fp8_communication": self.shard_config.fp8_communication,
|
|
},
|
|
)
|
|
],
|
|
)
|
|
}
|
|
else:
|
|
new_item = {
|
|
LlamaForCausalLM: ModulePolicyDescription(
|
|
sub_module_replacement=[
|
|
SubModuleReplacementDescription(
|
|
suffix="lm_head",
|
|
target_module=PaddingLMHead,
|
|
kwargs={"make_vocab_size_divisible_by": self.shard_config.make_vocab_size_divisible_by},
|
|
)
|
|
],
|
|
)
|
|
}
|
|
policy.update(new_item)
|
|
|
|
if self.pipeline_stage_manager:
|
|
# set None as default
|
|
self.set_pipeline_forward(
|
|
model_cls=LlamaForCausalLM, new_forward=LlamaPipelineForwards.llama_for_causal_lm_forward, policy=policy
|
|
)
|
|
elif self.shard_config.enable_tensor_parallelism or self.shard_config.enable_sequence_parallelism:
|
|
# Compute loss distributedly along the sequence dimension
|
|
new_item[LlamaForCausalLM].method_replacement = {
|
|
# "forward": get_lm_forward_with_dist_cross_entropy(self.shard_config)
|
|
"forward": partial(LlamaPipelineForwards.llama_for_causal_lm_forward, shard_config=self.shard_config)
|
|
}
|
|
return policy
|
|
|
|
def get_held_layers(self) -> List[Module]:
|
|
"""Get pipeline layers for current stage."""
|
|
stage_manager = self.pipeline_stage_manager
|
|
held_layers = super().get_held_layers()
|
|
if stage_manager.is_last_stage(ignore_chunk=True):
|
|
held_layers.append(self.model.lm_head)
|
|
return held_layers
|
|
|
|
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
|
llama_model = self.model.model
|
|
if self.pipeline_stage_manager and self.pipeline_stage_manager.num_stages > 1:
|
|
if (
|
|
id(llama_model.embed_tokens.weight) == id(self.model.lm_head.weight)
|
|
and self.pipeline_stage_manager.num_stages > 1
|
|
):
|
|
# tie weights
|
|
return [
|
|
{
|
|
0: llama_model.embed_tokens.weight,
|
|
self.pipeline_stage_manager.num_stages - 1: self.model.lm_head.weight,
|
|
}
|
|
]
|
|
return []
|
|
|
|
|
|
class LlamaForSequenceClassificationPolicy(LlamaPolicy):
|
|
def module_policy(self):
|
|
from transformers import LlamaForSequenceClassification
|
|
|
|
policy = super().module_policy()
|
|
|
|
if self.shard_config.enable_tensor_parallelism:
|
|
# add a new item for sequence classification
|
|
new_item = {
|
|
LlamaForSequenceClassification: ModulePolicyDescription(
|
|
sub_module_replacement=[
|
|
SubModuleReplacementDescription(
|
|
suffix="score",
|
|
target_module=Linear1D_Col,
|
|
kwargs=dict(
|
|
gather_output=True,
|
|
fp8_communication=self.shard_config.fp8_communication,
|
|
),
|
|
)
|
|
]
|
|
)
|
|
}
|
|
policy.update(new_item)
|
|
# to be confirmed
|
|
if self.pipeline_stage_manager:
|
|
# set None as default
|
|
self.set_pipeline_forward(
|
|
model_cls=LlamaForSequenceClassification,
|
|
new_forward=LlamaPipelineForwards.llama_for_sequence_classification_forward,
|
|
policy=policy,
|
|
)
|
|
return policy
|
|
|
|
def get_held_layers(self) -> List[Module]:
|
|
"""Get pipeline layers for current stage."""
|
|
stage_manager = self.pipeline_stage_manager
|
|
held_layers = super().get_held_layers()
|
|
if stage_manager.is_last_stage(ignore_chunk=True):
|
|
held_layers.append(self.model.score)
|
|
return held_layers
|
|
|
|
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
|
"""No shared params in llama for sequence classification model"""
|
|
return []
|