You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/shardformer/policies/blip2.py

462 lines
19 KiB

import colossalai.shardformer.layer as col_nn
from ..modeling.blip2 import (
forward_fn,
get_blip2_flash_attention_forward,
get_jit_fused_blip2_mlp_forward,
get_jit_fused_blip2_QFormer_output_forward,
get_jit_fused_blip2_QFormer_self_output_forward,
)
from ..modeling.jit import get_jit_fused_dropout_add_func
from .base_policy import ModulePolicyDescription, Policy, SubModuleReplacementDescription
__all__ = ["BlipPolicy", "BlipModelPolicy"]
class BlipPolicy(Policy):
def config_sanity_check(self):
pass
def preprocess(self):
self.tie_weight = self.tie_weight_check()
self.enable_bias_gelu_fused = (
self.shard_config.enable_jit_fused and self.model.config.vision_config.hidden_act == "gelu"
)
return self.model
def module_policy(self):
from transformers.models.blip_2.modeling_blip_2 import (
Blip2Attention,
Blip2EncoderLayer,
Blip2MLP,
Blip2QFormerLayer,
Blip2QFormerModel,
Blip2QFormerOutput,
Blip2QFormerSelfOutput,
Blip2VisionModel,
)
from transformers.models.opt.modeling_opt import OPTDecoderLayer, OPTForCausalLM
policy = {}
embedding_cls = None
if self.shard_config.enable_tensor_parallelism:
embedding_cls = col_nn.VocabParallelEmbedding1D
else:
if self.tie_weight:
embedding_cls = col_nn.PaddingEmbedding
if self.shard_config.enable_fused_normalization:
norm_cls = col_nn.FusedLayerNorm
else:
norm_cls = col_nn.LayerNorm
if self.shard_config.enable_tensor_parallelism:
assert (
self.model.config.vision_config.num_attention_heads % self.shard_config.tensor_parallel_size == 0
), f"The number of attention heads must be divisible by tensor parallel size."
policy[Blip2EncoderLayer] = ModulePolicyDescription(
attribute_replacement={
"self_attn.num_heads": self.model.config.vision_config.num_attention_heads
// self.shard_config.tensor_parallel_size,
"self_attn.embed_dim": self.model.config.vision_config.hidden_size
// self.shard_config.tensor_parallel_size,
},
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="self_attn.dropout",
target_module=col_nn.DropoutForParallelInput,
),
SubModuleReplacementDescription(
suffix="self_attn.qkv",
target_module=col_nn.FusedLinear1D_Col,
kwargs={
"split_sizes": [self.model.config.vision_config.hidden_size] * 3,
"fp8_communication": self.shard_config.fp8_communication,
},
),
SubModuleReplacementDescription(
suffix="self_attn.projection",
target_module=col_nn.Linear1D_Row,
kwargs={
"fp8_communication": self.shard_config.fp8_communication,
},
),
SubModuleReplacementDescription(
suffix="mlp.fc1",
target_module=col_nn.Linear1D_Col,
kwargs={
"skip_bias_add": self.enable_bias_gelu_fused,
"fp8_communication": self.shard_config.fp8_communication,
},
),
SubModuleReplacementDescription(
suffix="mlp.fc2",
target_module=col_nn.Linear1D_Row,
kwargs={
"fp8_communication": self.shard_config.fp8_communication,
},
),
],
)
policy[Blip2QFormerModel] = ModulePolicyDescription(
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="dropout",
target_module=col_nn.DropoutForParallelInput,
),
]
)
policy[Blip2QFormerLayer] = ModulePolicyDescription(
attribute_replacement={
"attention.attention.num_attention_heads": self.model.config.qformer_config.num_attention_heads
// self.shard_config.tensor_parallel_size,
"attention.attention.all_head_size": self.model.config.qformer_config.hidden_size
// self.shard_config.tensor_parallel_size,
"crossattention.attention.num_attention_heads": self.model.config.qformer_config.num_attention_heads
// self.shard_config.tensor_parallel_size,
"crossattention.attention.all_head_size": self.model.config.qformer_config.hidden_size
// self.shard_config.tensor_parallel_size,
},
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="attention.attention.query",
target_module=col_nn.Linear1D_Col,
kwargs={
"fp8_communication": self.shard_config.fp8_communication,
},
),
SubModuleReplacementDescription(
suffix="attention.attention.key",
target_module=col_nn.Linear1D_Col,
kwargs={
"fp8_communication": self.shard_config.fp8_communication,
},
),
SubModuleReplacementDescription(
suffix="attention.attention.value",
target_module=col_nn.Linear1D_Col,
kwargs={
"fp8_communication": self.shard_config.fp8_communication,
},
),
SubModuleReplacementDescription(
suffix="attention.attention.dropout",
target_module=col_nn.DropoutForParallelInput,
),
SubModuleReplacementDescription(
suffix="attention.output.dense",
target_module=col_nn.Linear1D_Row,
kwargs={
"fp8_communication": self.shard_config.fp8_communication,
},
),
SubModuleReplacementDescription(
suffix="attention.output.dropout",
target_module=col_nn.DropoutForParallelInput,
),
SubModuleReplacementDescription(
suffix="crossattention.attention.query",
target_module=col_nn.Linear1D_Col,
kwargs={
"fp8_communication": self.shard_config.fp8_communication,
},
),
SubModuleReplacementDescription(
suffix="crossattention.attention.key",
target_module=col_nn.Linear1D_Col,
kwargs={
"fp8_communication": self.shard_config.fp8_communication,
},
),
SubModuleReplacementDescription(
suffix="crossattention.attention.value",
target_module=col_nn.Linear1D_Col,
kwargs={
"fp8_communication": self.shard_config.fp8_communication,
},
),
SubModuleReplacementDescription(
suffix="crossattention.attention.dropout",
target_module=col_nn.DropoutForParallelInput,
),
SubModuleReplacementDescription(
suffix="crossattention.output.dense",
target_module=col_nn.Linear1D_Row,
kwargs={
"fp8_communication": self.shard_config.fp8_communication,
},
),
SubModuleReplacementDescription(
suffix="crossattention.output.dropout",
target_module=col_nn.DropoutForParallelInput,
),
SubModuleReplacementDescription(
suffix="intermediate_query.dense",
target_module=col_nn.Linear1D_Col,
kwargs={
"fp8_communication": self.shard_config.fp8_communication,
},
),
SubModuleReplacementDescription(
suffix="output_query.dense",
target_module=col_nn.Linear1D_Row,
kwargs={
"fp8_communication": self.shard_config.fp8_communication,
},
),
SubModuleReplacementDescription(
suffix="output_query.dropout",
target_module=col_nn.DropoutForParallelInput,
),
],
)
policy[OPTDecoderLayer] = ModulePolicyDescription(
attribute_replacement={
"self_attn.embed_dim": self.model.config.text_config.hidden_size
// self.shard_config.tensor_parallel_size,
"self_attn.num_heads": self.model.config.text_config.num_attention_heads
// self.shard_config.tensor_parallel_size,
},
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="self_attn.q_proj",
target_module=col_nn.Linear1D_Col,
kwargs={
"fp8_communication": self.shard_config.fp8_communication,
},
),
SubModuleReplacementDescription(
suffix="self_attn.k_proj",
target_module=col_nn.Linear1D_Col,
kwargs={
"fp8_communication": self.shard_config.fp8_communication,
},
),
SubModuleReplacementDescription(
suffix="self_attn.v_proj",
target_module=col_nn.Linear1D_Col,
kwargs={
"fp8_communication": self.shard_config.fp8_communication,
},
),
SubModuleReplacementDescription(
suffix="self_attn.out_proj",
target_module=col_nn.Linear1D_Row,
kwargs={
"fp8_communication": self.shard_config.fp8_communication,
},
),
SubModuleReplacementDescription(
suffix="fc1",
target_module=col_nn.Linear1D_Col,
kwargs={
"fp8_communication": self.shard_config.fp8_communication,
},
),
SubModuleReplacementDescription(
suffix="fc2",
target_module=col_nn.Linear1D_Row,
kwargs={
"fp8_communication": self.shard_config.fp8_communication,
},
),
],
)
policy[Blip2Attention] = ModulePolicyDescription(method_replacement={"forward": forward_fn()})
if self.enable_bias_gelu_fused:
self.append_or_create_method_replacement(
description={
"forward": get_jit_fused_blip2_mlp_forward(),
},
policy=policy,
target_key=Blip2MLP,
)
if embedding_cls is not None:
self.append_or_create_submodule_replacement(
description=[
SubModuleReplacementDescription(
suffix="model.decoder.embed_tokens",
target_module=embedding_cls,
kwargs=(
{
"make_vocab_size_divisible_by": self.shard_config.make_vocab_size_divisible_by,
"fp8_communication": self.shard_config.fp8_communication,
}
if self.shard_config.enable_tensor_parallelism
else {"make_vocab_size_divisible_by": self.shard_config.make_vocab_size_divisible_by}
),
),
],
policy=policy,
target_key=OPTForCausalLM,
)
if self.shard_config.enable_tensor_parallelism:
self.append_or_create_submodule_replacement(
description=[
SubModuleReplacementDescription(
suffix="lm_head",
target_module=col_nn.VocabParallelLMHead1D,
kwargs={
"gather_output": True,
"make_vocab_size_divisible_by": self.shard_config.make_vocab_size_divisible_by,
"fp8_communication": self.shard_config.fp8_communication,
},
),
],
policy=policy,
target_key=OPTForCausalLM,
)
else:
self.append_or_create_submodule_replacement(
description=[
SubModuleReplacementDescription(
suffix="lm_head",
target_module=col_nn.PaddingLMHead,
kwargs={"make_vocab_size_divisible_by": self.shard_config.make_vocab_size_divisible_by},
),
],
policy=policy,
target_key=OPTForCausalLM,
)
# optimization configuration
# Handle Blip2EncoderLayer layer
self.append_or_create_submodule_replacement(
description=[
SubModuleReplacementDescription(
suffix="layer_norm1",
target_module=norm_cls,
),
SubModuleReplacementDescription(
suffix="layer_norm2",
target_module=norm_cls,
),
],
policy=policy,
target_key=Blip2EncoderLayer,
)
# handle Blip2VisionModel layer
self.append_or_create_submodule_replacement(
description=[
SubModuleReplacementDescription(
suffix="post_layernorm",
target_module=norm_cls,
)
],
policy=policy,
target_key=Blip2VisionModel,
)
# handle Blip2VisionModel layer
self.append_or_create_submodule_replacement(
description=[
SubModuleReplacementDescription(
suffix="layernorm",
target_module=norm_cls,
)
],
policy=policy,
target_key=Blip2QFormerModel,
)
# handle Blip2QFormerLayer layer
self.append_or_create_submodule_replacement(
description=[
SubModuleReplacementDescription(
suffix="attention.output.LayerNorm",
target_module=norm_cls,
),
SubModuleReplacementDescription(
suffix="crossattention.output.LayerNorm",
target_module=norm_cls,
),
SubModuleReplacementDescription(
suffix="output_query.LayerNorm",
target_module=norm_cls,
),
],
policy=policy,
target_key=Blip2QFormerLayer,
)
# handle OPTForCausalLM layer
self.append_or_create_submodule_replacement(
description=[
SubModuleReplacementDescription(
suffix="model.decoder.final_layer_norm",
target_module=norm_cls,
)
],
policy=policy,
target_key=OPTForCausalLM,
)
# handle OPTDecoderLayer layer
self.append_or_create_submodule_replacement(
description=[
SubModuleReplacementDescription(
suffix="self_attn_layer_norm",
target_module=norm_cls,
),
SubModuleReplacementDescription(
suffix="final_layer_norm",
target_module=norm_cls,
),
],
policy=policy,
target_key=OPTDecoderLayer,
)
# use flash attention
if self.shard_config.enable_flash_attention:
self.append_or_create_method_replacement(
description={
"forward": get_blip2_flash_attention_forward(),
},
policy=policy,
target_key=Blip2Attention,
)
# use jit operator
if self.shard_config.enable_jit_fused:
self.append_or_create_method_replacement(
description={
"forward": get_jit_fused_blip2_QFormer_self_output_forward(),
"dropout_add": get_jit_fused_dropout_add_func(),
},
policy=policy,
target_key=Blip2QFormerSelfOutput,
)
self.append_or_create_method_replacement(
description={
"forward": get_jit_fused_blip2_QFormer_output_forward(),
"dropout_add": get_jit_fused_dropout_add_func(),
},
policy=policy,
target_key=Blip2QFormerOutput,
)
return policy
def postprocess(self):
return self.model
# Blip2Model
class Blip2ModelPolicy(BlipPolicy):
def __init__(self) -> None:
super().__init__()
# Blip2ForConditionalGeneration
class Blip2ForConditionalGenerationPolicy(BlipPolicy):
def __init__(self) -> None:
super().__init__()