mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
88 lines
3.5 KiB
88 lines
3.5 KiB
""" |
|
Script for Chinese retrieval based conversation system backed by ChatGLM |
|
""" |
|
|
|
from typing import Tuple |
|
|
|
from colossalqa.chain.retrieval_qa.base import RetrievalQA |
|
from colossalqa.local.llm import ColossalAPI, ColossalLLM |
|
from colossalqa.memory import ConversationBufferWithSummary |
|
from colossalqa.mylogging import get_logger |
|
from colossalqa.prompt.prompt import PROMPT_DISAMBIGUATE_EN, PROMPT_RETRIEVAL_QA_EN |
|
from colossalqa.retriever import CustomRetriever |
|
from langchain import LLMChain |
|
|
|
logger = get_logger() |
|
|
|
|
|
class EnglishRetrievalConversation: |
|
""" |
|
Wrapper class for Chinese retrieval conversation system |
|
""" |
|
|
|
def __init__(self, retriever: CustomRetriever, model_path: str, model_name: str) -> None: |
|
""" |
|
Setup retrieval qa chain for Chinese retrieval based QA |
|
""" |
|
logger.info(f"model_name: {model_name}; model_path: {model_path}", verbose=True) |
|
colossal_api = ColossalAPI.get_api(model_name, model_path) |
|
self.llm = ColossalLLM(n=1, api=colossal_api) |
|
|
|
# Define the retriever |
|
self.retriever = retriever |
|
|
|
# Define the chain to preprocess the input |
|
# Disambiguate the input. e.g. "What is the capital of that country?" -> "What is the capital of France?" |
|
# Prompt is summarization prompt |
|
self.llm_chain_disambiguate = LLMChain( |
|
llm=self.llm, |
|
prompt=PROMPT_DISAMBIGUATE_EN, |
|
llm_kwargs={"max_new_tokens": 30, "temperature": 0.6, "do_sample": True}, |
|
) |
|
|
|
self.retriever.set_rephrase_handler(self.disambiguity) |
|
# Define memory with summarization ability |
|
self.memory = ConversationBufferWithSummary( |
|
llm=self.llm, llm_kwargs={"max_new_tokens": 50, "temperature": 0.6, "do_sample": True} |
|
) |
|
self.memory.initiate_document_retrieval_chain( |
|
self.llm, |
|
PROMPT_RETRIEVAL_QA_EN, |
|
self.retriever, |
|
chain_type_kwargs={ |
|
"chat_history": "", |
|
}, |
|
) |
|
self.retrieval_chain = RetrievalQA.from_chain_type( |
|
llm=self.llm, |
|
verbose=False, |
|
chain_type="stuff", |
|
retriever=self.retriever, |
|
chain_type_kwargs={"prompt": PROMPT_RETRIEVAL_QA_EN, "memory": self.memory}, |
|
llm_kwargs={"max_new_tokens": 50, "temperature": 0.75, "do_sample": True}, |
|
) |
|
|
|
def disambiguity(self, input: str): |
|
out = self.llm_chain_disambiguate.run(input=input, chat_history=self.memory.buffer, stop=["\n"]) |
|
return out.split("\n")[0] |
|
|
|
@classmethod |
|
def from_retriever( |
|
cls, retriever: CustomRetriever, model_path: str, model_name: str |
|
) -> "EnglishRetrievalConversation": |
|
return cls(retriever, model_path, model_name) |
|
|
|
def run(self, user_input: str, memory: ConversationBufferWithSummary) -> Tuple[str, ConversationBufferWithSummary]: |
|
if memory: |
|
# TODO add translation chain here |
|
self.memory.buffered_history.messages = memory.buffered_history.messages |
|
self.memory.summarized_history_temp.messages = memory.summarized_history_temp.messages |
|
return ( |
|
self.retrieval_chain.run( |
|
query=user_input, |
|
stop=[self.memory.human_prefix + ": "], |
|
rejection_trigger_keywords=["cannot answer the question"], |
|
rejection_answer="Sorry, this question cannot be answered based on the information provided.", |
|
).split("\n")[0], |
|
self.memory, |
|
)
|
|
|