You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/nn/layer/parallel_1d/_operation.py

46 lines
1.7 KiB

import torch
try:
import fused_mix_prec_layer_norm_cuda
except:
fused_mix_prec_layer_norm_cuda = None
class FusedLayerNormAffineFunction1D(torch.autograd.Function):
r"""
Layernorm
:param input: input maxtrix
:param weight: weight matrix
:param bias: bias matrix
:param normalized_shape: input shape from an expected input
of size. :math:`[* \times \text{normalized_shape}[0] \times \text{normalized_shape}[1] \times \ldots \times \text{normalized_shape}[-1]]`
If a single integer is used, it is treated as a singleton list, and this module will
normalize over the last dimension which is expected to be of that specific size.
:param eps: a value added to the denominator for numerical stability
"""
@staticmethod
def forward(ctx, input, weight, bias, normalized_shape, eps):
ctx.normalized_shape = normalized_shape
ctx.eps = eps
input_ = input.contiguous()
weight_ = weight.contiguous()
bias_ = bias.contiguous()
output, mean, invvar = fused_mix_prec_layer_norm_cuda.forward_affine(input_, ctx.normalized_shape, weight_,
bias_, ctx.eps)
ctx.save_for_backward(input_, weight_, bias_, mean, invvar)
return output
@staticmethod
def backward(ctx, grad_output):
input_, weight_, bias_, mean, invvar = ctx.saved_tensors
grad_input = grad_weight = grad_bias = None
grad_input, grad_weight, grad_bias \
= fused_mix_prec_layer_norm_cuda.backward_affine(
grad_output.contiguous(), mean, invvar,
input_, ctx.normalized_shape,
weight_, bias_, ctx.eps)
return grad_input, grad_weight, grad_bias, None, None