mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
150 lines
5.2 KiB
150 lines
5.2 KiB
import math
|
|
from typing import Callable
|
|
|
|
from colossalai.utils import get_current_device
|
|
from torch import dtype, nn
|
|
|
|
from ... import init as init
|
|
from ..parallel_1d import *
|
|
from ..parallel_2d import *
|
|
from ..parallel_2p5d import *
|
|
from ..parallel_3d import *
|
|
from ..utils import get_tensor_parallel_mode
|
|
from ..vanilla import *
|
|
|
|
_parallel_linear = {'1d': Linear1D, '2d': Linear2D, '2.5d': Linear2p5D, '3d': Linear3D}
|
|
|
|
_parallel_classifier = {
|
|
None: VanillaClassifier,
|
|
'1d': Classifier1D,
|
|
'2d': Classifier2D,
|
|
'2.5d': Classifier2p5D,
|
|
'3d': Classifier3D
|
|
}
|
|
|
|
_vocab_parallel_classifier = {
|
|
'1d': VocabParallelClassifier1D,
|
|
'2d': VocabParallelClassifier2D,
|
|
'2.5d': VocabParallelClassifier2p5D,
|
|
'3d': VocabParallelClassifier3D
|
|
}
|
|
|
|
|
|
class Linear(nn.Module):
|
|
"""
|
|
Linear layer of colossalai
|
|
|
|
:param in_features: size of each input sample
|
|
:type in_features: int
|
|
:param out_features: size of each output sample
|
|
:type out_features: int
|
|
:param bias: If set to ``False``, the layer will not learn an additive bias, defaults to True
|
|
:type bias: bool, optional
|
|
:param dtype: The dtype of parameters, defaults to None
|
|
:type dtype: torch.dtype, optional
|
|
:param weight_initializer: The intializer of weight, defaults to kaiming uniform initializer
|
|
:type weight_initializer: typing.Callable, optional
|
|
:param bias_initializer: The intializer of bias, defaults to xavier uniform initializer
|
|
:type bias_initializer: typing.Callable, optional
|
|
:param kwargs: Kwargs used for particular parallelisms
|
|
"""
|
|
|
|
def __init__(self,
|
|
in_features: int,
|
|
out_features: int,
|
|
bias: bool = True,
|
|
dtype: dtype = None,
|
|
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
|
|
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1),
|
|
**kwargs) -> None:
|
|
super().__init__()
|
|
tensor_parallel = get_tensor_parallel_mode()
|
|
if tensor_parallel is None:
|
|
self.layer = nn.Linear(in_features, out_features, bias=bias).to(dtype).to(get_current_device())
|
|
weight_initializer(self.layer.weight, fan_in=in_features, fan_out=out_features)
|
|
if self.layer.bias is not None:
|
|
bias_initializer(self.layer.bias, fan_in=in_features)
|
|
else:
|
|
self.layer = _parallel_linear[tensor_parallel](
|
|
in_features,
|
|
out_features,
|
|
bias=bias,
|
|
dtype=dtype,
|
|
weight_initializer=weight_initializer,
|
|
bias_initializer=bias_initializer,
|
|
**kwargs,
|
|
)
|
|
|
|
@property
|
|
def weight(self):
|
|
return self.layer.weight
|
|
|
|
@property
|
|
def bias(self):
|
|
return self.layer.bias
|
|
|
|
def forward(self, *args):
|
|
return self.layer(*args)
|
|
|
|
|
|
class Classifier(nn.Module):
|
|
"""
|
|
Classifier layer of colossalai
|
|
|
|
:param in_features: size of each input sample
|
|
:type in_features: int
|
|
:param num_classes: number of total classes for the dataset
|
|
:type num_classes: int
|
|
:param bias: If set to ``False``, the layer will not learn an additive bias, defaults to True
|
|
:type bias: bool, optional
|
|
:param dtype: The dtype of parameters, defaults to None
|
|
:type dtype: torch.dtype, optional
|
|
:param weight_initializer: The intializer of weight, defaults to kaiming uniform initializer
|
|
:type weight_initializer: typing.Callable, optional
|
|
:param bias_initializer: The intializer of bias, defaults to xavier uniform initializer
|
|
:type bias_initializer: typing.Callable, optional
|
|
"""
|
|
|
|
def __init__(self,
|
|
in_features: int,
|
|
num_classes: int,
|
|
weight: nn.Parameter = None,
|
|
bias: bool = True,
|
|
dtype: dtype = None,
|
|
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
|
|
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1),
|
|
vocab_parallel_limit: int = 2048) -> None:
|
|
super().__init__()
|
|
tensor_parallel = get_tensor_parallel_mode()
|
|
if num_classes <= vocab_parallel_limit or tensor_parallel is None:
|
|
self.layer = _parallel_classifier[tensor_parallel](
|
|
in_features,
|
|
num_classes,
|
|
weight=weight,
|
|
bias=bias,
|
|
dtype=dtype,
|
|
weight_initializer=weight_initializer,
|
|
bias_initializer=bias_initializer,
|
|
)
|
|
else:
|
|
self.layer = _vocab_parallel_classifier[tensor_parallel](
|
|
in_features,
|
|
num_classes,
|
|
weight=weight,
|
|
bias=bias,
|
|
dtype=dtype,
|
|
weight_initializer=weight_initializer,
|
|
bias_initializer=bias_initializer,
|
|
)
|
|
|
|
@property
|
|
def weight(self):
|
|
return self.layer.weight
|
|
|
|
@property
|
|
def bias(self):
|
|
return self.layer.bias
|
|
|
|
def forward(self, *args):
|
|
return self.layer(*args)
|