You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/nn/layer/colossalai_layer/linear.py

150 lines
5.2 KiB

import math
from typing import Callable
from colossalai.utils import get_current_device
from torch import dtype, nn
from ... import init as init
from ..parallel_1d import *
from ..parallel_2d import *
from ..parallel_2p5d import *
from ..parallel_3d import *
from ..utils import get_tensor_parallel_mode
from ..vanilla import *
_parallel_linear = {'1d': Linear1D, '2d': Linear2D, '2.5d': Linear2p5D, '3d': Linear3D}
_parallel_classifier = {
None: VanillaClassifier,
'1d': Classifier1D,
'2d': Classifier2D,
'2.5d': Classifier2p5D,
'3d': Classifier3D
}
_vocab_parallel_classifier = {
'1d': VocabParallelClassifier1D,
'2d': VocabParallelClassifier2D,
'2.5d': VocabParallelClassifier2p5D,
'3d': VocabParallelClassifier3D
}
class Linear(nn.Module):
"""
Linear layer of colossalai
:param in_features: size of each input sample
:type in_features: int
:param out_features: size of each output sample
:type out_features: int
:param bias: If set to ``False``, the layer will not learn an additive bias, defaults to True
:type bias: bool, optional
:param dtype: The dtype of parameters, defaults to None
:type dtype: torch.dtype, optional
:param weight_initializer: The intializer of weight, defaults to kaiming uniform initializer
:type weight_initializer: typing.Callable, optional
:param bias_initializer: The intializer of bias, defaults to xavier uniform initializer
:type bias_initializer: typing.Callable, optional
:param kwargs: Kwargs used for particular parallelisms
"""
def __init__(self,
in_features: int,
out_features: int,
bias: bool = True,
dtype: dtype = None,
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1),
**kwargs) -> None:
super().__init__()
tensor_parallel = get_tensor_parallel_mode()
if tensor_parallel is None:
self.layer = nn.Linear(in_features, out_features, bias=bias).to(dtype).to(get_current_device())
weight_initializer(self.layer.weight, fan_in=in_features, fan_out=out_features)
if self.layer.bias is not None:
bias_initializer(self.layer.bias, fan_in=in_features)
else:
self.layer = _parallel_linear[tensor_parallel](
in_features,
out_features,
bias=bias,
dtype=dtype,
weight_initializer=weight_initializer,
bias_initializer=bias_initializer,
**kwargs,
)
@property
def weight(self):
return self.layer.weight
@property
def bias(self):
return self.layer.bias
def forward(self, *args):
return self.layer(*args)
class Classifier(nn.Module):
"""
Classifier layer of colossalai
:param in_features: size of each input sample
:type in_features: int
:param num_classes: number of total classes for the dataset
:type num_classes: int
:param bias: If set to ``False``, the layer will not learn an additive bias, defaults to True
:type bias: bool, optional
:param dtype: The dtype of parameters, defaults to None
:type dtype: torch.dtype, optional
:param weight_initializer: The intializer of weight, defaults to kaiming uniform initializer
:type weight_initializer: typing.Callable, optional
:param bias_initializer: The intializer of bias, defaults to xavier uniform initializer
:type bias_initializer: typing.Callable, optional
"""
def __init__(self,
in_features: int,
num_classes: int,
weight: nn.Parameter = None,
bias: bool = True,
dtype: dtype = None,
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1),
vocab_parallel_limit: int = 2048) -> None:
super().__init__()
tensor_parallel = get_tensor_parallel_mode()
if num_classes <= vocab_parallel_limit or tensor_parallel is None:
self.layer = _parallel_classifier[tensor_parallel](
in_features,
num_classes,
weight=weight,
bias=bias,
dtype=dtype,
weight_initializer=weight_initializer,
bias_initializer=bias_initializer,
)
else:
self.layer = _vocab_parallel_classifier[tensor_parallel](
in_features,
num_classes,
weight=weight,
bias=bias,
dtype=dtype,
weight_initializer=weight_initializer,
bias_initializer=bias_initializer,
)
@property
def weight(self):
return self.layer.weight
@property
def bias(self):
return self.layer.bias
def forward(self, *args):
return self.layer(*args)