ColossalAI/colossalai/engine/ophooks/_memtracer_ophook.py

131 lines
4.1 KiB
Python

import torch
from . import BaseOpHook
from concurrent.futures import ThreadPoolExecutor
from colossalai.registry import OPHOOKS
from colossalai.logging import get_dist_logger
from time import sleep, time
import pickle
def get_cuda_memory_used(device):
"""
Get the free memory info of device.
Notice that for CPU, this function will return 1/N of the total free memory,
where N is the world size.
"""
ret = torch.cuda.memory_allocated()
# get the peak memory to report correct data, so reset the counter for the next call
if hasattr(torch.cuda, "reset_peak_memory_stats"): # pytorch 1.4+
torch.cuda.reset_peak_memory_stats()
return ret
class AsyncMemoryMonitor:
def __init__(self, power=10):
"""
An Async Mem Monitor runing during computing.
Sampling GPU memory usage of the current GPU dev
at interval of 1/(10**power) sec.
"""
self.keep_measuring = False
self.executor = ThreadPoolExecutor(max_workers=1)
self.monitor_thread = None
self.interval = 1 / (10**power)
self.time_stamps = []
self.mem_stats = []
def set_interval(self, power: int):
self.interval = 1 / (10**power)
def is_measuring(self):
return self.keep_measuring
def start(self):
self.keep_measuring = True
self.monitor_thread = self.executor.submit(self._measure_usage)
def finish(self):
if self.keep_measuring is False:
return 0
self.keep_measuring = False
max_usage = self.monitor_thread.result()
self.monitor_thread = None
self.time_stamps.append(time())
self.mem_stats.append(max_usage)
return max_usage
def _measure_usage(self):
max_usage = 0
dev = torch.device(f"cuda:{torch.cuda.current_device()}")
while self.keep_measuring:
max_usage = max(
max_usage,
get_cuda_memory_used(dev),
)
sleep(self.interval)
return max_usage
def state_dict(self):
return {
"time_stamps": self.time_stamps,
"mem_stats": self.mem_stats,
}
def save(self, filename):
with open(filename, "wb") as f:
pickle.dump(self.state_dict(), f)
@OPHOOKS.register_module
class MemTracerOpHook(BaseOpHook):
def __init__(self, niter=5):
super().__init__()
self.async_mem_monitor = AsyncMemoryMonitor()
self._niter = niter
self._curiter = 0
self._logger = get_dist_logger()
def _isvalid(self, module):
return module.training and self._curiter < self._niter
def niter(self):
return self._niter
def pre_fwd_exec(self, module: torch.nn.Module, *args):
if self._isvalid(module):
self.async_mem_monitor.finish()
self.async_mem_monitor.start()
self._logger.debug(f'FWD PRE {module.__class__.__name__}')
def post_fwd_exec(self, module: torch.nn.Module, *args):
if self._isvalid(module):
self.async_mem_monitor.finish()
self._logger.debug(f'FWD POST {module.__class__.__name__}')
def pre_bwd_exec(self, module: torch.nn.Module, input, output):
assert isinstance(module, torch.nn.Module)
if self._isvalid(module):
self.async_mem_monitor.finish()
self.async_mem_monitor.start()
self._logger.debug(f'BWD PRE {module.__class__.__name__}')
def post_bwd_exec(self, module: torch.nn.Module, input):
assert isinstance(module, torch.nn.Module)
if self._isvalid(module):
self.async_mem_monitor.finish()
self._logger.debug(f'BWD POST {module.__class__.__name__}')
def pre_iter(self):
pass
def post_iter(self):
self.async_mem_monitor.finish()
if self._curiter == self._niter:
self._logger.info(
f'dump a memory statistics as pickle to ./memstats.pkl')
self.save_results("memstats.pkl")
self._curiter += 1
def save_results(self, filename):
self.async_mem_monitor.save(filename)