mirror of https://github.com/hpcaitech/ColossalAI
113 lines
3.8 KiB
Python
113 lines
3.8 KiB
Python
# Copyright (c) Facebook, Inc. and its affiliates.
|
|
#
|
|
# This source code is licensed under the BSD license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
import functools
|
|
from typing import Callable, Dict, List, Optional, Tuple
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
from torch import Tensor
|
|
from torch.distributed import ProcessGroup
|
|
|
|
|
|
class Bucket:
|
|
def __init__(self, size: int, dtype: torch.dtype, device: torch.device, group: ProcessGroup):
|
|
self.buffer = torch.zeros(size, dtype=dtype, device=device)
|
|
self.group = group
|
|
self.offset = 0
|
|
self.callbacks: List[Callable] = []
|
|
|
|
def flush(self) -> None:
|
|
"""Flush content of the bucket."""
|
|
if self.offset == 0:
|
|
assert len(self.callbacks) == 0
|
|
return
|
|
# reduce-scatter bucket
|
|
dist.all_reduce(self.buffer[: self.offset], group=self.group)
|
|
|
|
# execute post-reduction callbacks
|
|
for callback_fn in self.callbacks:
|
|
callback_fn()
|
|
# reuse input bucket but allocate a fresh output shard
|
|
self.offset = 0
|
|
self.callbacks.clear()
|
|
self.buffer = torch.zeros_like(self.buffer)
|
|
|
|
def alloc(self) -> None:
|
|
if self.buffer.storage().size() == 0:
|
|
self.buffer.storage().resize_(self.buffer.numel())
|
|
|
|
def free(self) -> None:
|
|
assert self.offset == 0 and self.callbacks == [], "Incorrect call of teardown"
|
|
self.buffer.storage().resize_(0)
|
|
|
|
def append(self, tensor: Tensor, callback_fn: Callable):
|
|
tensor_size = tensor.numel()
|
|
offset = self.offset
|
|
self.buffer[offset : offset + tensor_size].copy_(tensor.flatten())
|
|
self.offset += tensor_size
|
|
|
|
# callback will be given the reduced result
|
|
if callback_fn is not None:
|
|
result_view = self.buffer[offset : offset + tensor_size].view(tensor.shape)
|
|
self.callbacks.append(functools.partial(callback_fn, result_view))
|
|
|
|
@property
|
|
def avail_size(self) -> int:
|
|
return self.buffer.size(0) - self.offset
|
|
|
|
|
|
class Reducer:
|
|
def __init__(self, bucket_size_mb: int = 25):
|
|
self.bucket_size_mb = bucket_size_mb
|
|
self.buckets: Dict[Tuple[torch.dtype, torch.device, ProcessGroup], Bucket] = {}
|
|
|
|
@torch.no_grad()
|
|
def all_reduce_async(
|
|
self,
|
|
tensor: Tensor,
|
|
group: ProcessGroup,
|
|
callback_fn: Optional[Callable] = None,
|
|
) -> None:
|
|
bucket_size = self._get_bucket_size(tensor.element_size())
|
|
|
|
if tensor.numel() >= bucket_size:
|
|
dist.all_reduce(tensor, group=group)
|
|
if callback_fn is not None:
|
|
callback_fn(tensor)
|
|
return
|
|
|
|
bucket = self._get_bucket(tensor, group)
|
|
if tensor.numel() > bucket.avail_size:
|
|
# not enough space remaining in bucket, flush it now
|
|
bucket.flush()
|
|
bucket.append(tensor, callback_fn)
|
|
|
|
@torch.no_grad()
|
|
def flush(self) -> None:
|
|
for bucket in self.buckets.values():
|
|
bucket.flush()
|
|
|
|
@torch.no_grad()
|
|
def free(self) -> None:
|
|
for bucket in self.buckets.values():
|
|
bucket.free()
|
|
|
|
@functools.lru_cache()
|
|
def _get_bucket_size(self, element_size: int) -> int:
|
|
if self.bucket_size_mb <= 0: # Values <= 0 disable bucketing.
|
|
return 0
|
|
MB = 1024 * 1024
|
|
bucket_size = self.bucket_size_mb * MB / element_size
|
|
return int(bucket_size)
|
|
|
|
def _get_bucket(self, tensor: Tensor, group: ProcessGroup) -> Bucket:
|
|
key = (tensor.dtype, tensor.device, group)
|
|
if key not in self.buckets:
|
|
bucket_size = self._get_bucket_size(tensor.element_size())
|
|
self.buckets[key] = Bucket(bucket_size, tensor.dtype, tensor.device, group)
|
|
self.buckets[key].alloc()
|
|
return self.buckets[key]
|