mirror of https://github.com/hpcaitech/ColossalAI
351 lines
14 KiB
Python
351 lines
14 KiB
Python
import math
|
|
from typing import Callable
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from torch import Tensor
|
|
from torch import nn as nn
|
|
from torch.nn.parameter import Parameter
|
|
|
|
from colossalai.legacy.context import seed
|
|
from colossalai.legacy.registry import LAYERS
|
|
from colossalai.nn import init as init
|
|
from colossalai.utils.cuda import get_current_device
|
|
|
|
from ..utils import to_2tuple
|
|
|
|
|
|
def drop_path(x, drop_prob: float = 0.0, training: bool = False):
|
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
|
|
|
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
|
|
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
|
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
|
|
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
|
|
'survival rate' as the argument.
|
|
|
|
Args:
|
|
drop_prob (float, optional): probability of dropping path, defaults 0.0.
|
|
training (bool, optional): whether in training progress, defaults False.
|
|
"""
|
|
if drop_prob == 0.0 or not training:
|
|
return x
|
|
keep_prob = 1 - drop_prob
|
|
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
|
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
|
|
random_tensor.floor_() # binarize
|
|
output = x.div(keep_prob) * random_tensor
|
|
return output
|
|
|
|
|
|
class DropPath(nn.Module):
|
|
"""
|
|
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
|
Adapted from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py
|
|
|
|
Args:
|
|
drop_prob (float, optional): probability of dropping path, defaults None.
|
|
"""
|
|
|
|
def __init__(self, drop_prob=None):
|
|
super(DropPath, self).__init__()
|
|
self.drop_prob = drop_prob
|
|
|
|
def forward(self, x):
|
|
return drop_path(x, self.drop_prob, self.training)
|
|
|
|
|
|
class WrappedDropout(nn.Module):
|
|
r"""Same as torch.nn.Dropout. But it is wrapped with the context of seed manager. During training, randomly zeroes
|
|
some elements of the input tensor with probability p using samples from a Bernoulli distribution. Each
|
|
channel will be zeroed out independently on every forward call. Furthermore, the outputs are scaled by a factor of
|
|
1/(1-p) during training. This means that during evaluation the module simply computes an identity function.
|
|
|
|
Args:
|
|
p (float, optional): probability of an element to be zeroed, defaults 0.5.
|
|
inplace (bool, optional): whether to do dropout in-place, default to be False.
|
|
mode (:class:`colossalai.legacy.context.ParallelMode`): The chosen parallel mode.
|
|
|
|
Note:
|
|
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found
|
|
in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_
|
|
"""
|
|
|
|
def __init__(self, p: float = 0.5, inplace: bool = False, mode=None):
|
|
super().__init__()
|
|
if p < 0 or p > 1:
|
|
raise ValueError("dropout probability has to be between 0 and 1, " "but got {}".format(p))
|
|
self.p = p
|
|
self.inplace = inplace
|
|
if mode is None:
|
|
self.func = self.nonefunc
|
|
else:
|
|
self.func = self.normalfunc
|
|
self.mode = mode
|
|
|
|
def nonefunc(self, inputs):
|
|
return F.dropout(inputs, self.p, self.training, self.inplace)
|
|
|
|
def normalfunc(self, inputs):
|
|
with seed(self.mode):
|
|
return F.dropout(inputs, self.p, self.training, self.inplace)
|
|
|
|
def forward(self, inputs):
|
|
return self.func(inputs)
|
|
|
|
|
|
class WrappedDropPath(nn.Module):
|
|
r"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
|
Here, it is wrapped with the context of seed manager.
|
|
|
|
Args:
|
|
p (float, optional): probability of dropping path, defaults 0.0.
|
|
mode (:class:`colossalai.legacy.context.ParallelMode`): The chosen parallel mode.
|
|
|
|
Note:
|
|
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found
|
|
in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_
|
|
"""
|
|
|
|
def __init__(self, p: float = 0.0, mode=None):
|
|
super().__init__()
|
|
self.p = p
|
|
self.mode = mode
|
|
if self.mode is None:
|
|
self.func = self.nonefunc
|
|
else:
|
|
self.func = self.normalfunc
|
|
self.mode = mode
|
|
|
|
def nonefunc(self, inputs):
|
|
return drop_path(inputs, self.p, self.training)
|
|
|
|
def normalfunc(self, inputs):
|
|
with seed(self.mode):
|
|
return drop_path(inputs, self.p, self.training)
|
|
|
|
def forward(self, inputs):
|
|
return self.func(inputs)
|
|
|
|
|
|
@LAYERS.register_module
|
|
class VanillaPatchEmbedding(nn.Module):
|
|
r"""
|
|
2D Image to Patch Embedding
|
|
|
|
Args:
|
|
img_size (int): image size.
|
|
patch_size (int): patch size.
|
|
in_chans (int): number of channels of input image.
|
|
embed_size (int): size of embedding.
|
|
dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None.
|
|
flatten (bool, optional): whether to flatten output tensor, defaults to True.
|
|
weight_initializer (:class:`typing.Callable`, optional):
|
|
The initializer of weight, defaults to kaiming uniform initializer.
|
|
bias_initializer (:class:`typing.Callable`, optional):
|
|
The initializer of bias, defaults to xavier uniform initializer.
|
|
position_embed_initializer (:class:`typing.Callable`, optional):
|
|
The initializer of position embedding, defaults to zeros initializer.
|
|
|
|
More details about initializer please refer to
|
|
`init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
img_size: int,
|
|
patch_size: int,
|
|
in_chans: int,
|
|
embed_size: int,
|
|
flatten: bool = True,
|
|
dtype: torch.dtype = None,
|
|
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
|
|
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1),
|
|
position_embed_initializer: Callable = init.zeros_(),
|
|
):
|
|
super().__init__()
|
|
img_size = to_2tuple(img_size)
|
|
patch_size = to_2tuple(patch_size)
|
|
self.img_size = img_size
|
|
self.patch_size = patch_size
|
|
self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
|
|
self.num_patches = self.grid_size[0] * self.grid_size[1]
|
|
self.flatten = flatten
|
|
|
|
self.weight = nn.Parameter(
|
|
torch.empty((embed_size, in_chans, *self.patch_size), device=get_current_device(), dtype=dtype)
|
|
)
|
|
self.bias = nn.Parameter(torch.empty(embed_size, device=get_current_device(), dtype=dtype))
|
|
self.cls_token = nn.Parameter(torch.zeros((1, 1, embed_size), device=get_current_device(), dtype=dtype))
|
|
self.pos_embed = nn.Parameter(
|
|
torch.zeros((1, self.num_patches + 1, embed_size), device=get_current_device(), dtype=dtype)
|
|
)
|
|
|
|
self.reset_parameters(weight_initializer, bias_initializer, position_embed_initializer)
|
|
|
|
def reset_parameters(self, weight_initializer, bias_initializer, position_embed_initializer):
|
|
fan_in, fan_out = nn.init._calculate_fan_in_and_fan_out(self.weight)
|
|
weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out)
|
|
bias_initializer(self.bias, fan_in=fan_in)
|
|
position_embed_initializer(self.pos_embed)
|
|
|
|
def forward(self, input_: Tensor) -> Tensor:
|
|
B, C, H, W = input_.shape
|
|
assert (
|
|
H == self.img_size[0] and W == self.img_size[1]
|
|
), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
|
output = F.conv2d(input_, self.weight, self.bias, stride=self.patch_size)
|
|
if self.flatten:
|
|
output = output.flatten(2).transpose(1, 2) # BCHW -> BNC
|
|
|
|
cls_token = self.cls_token.expand(output.shape[0], -1, -1)
|
|
output = torch.cat((cls_token, output), dim=1)
|
|
output = output + self.pos_embed
|
|
return output
|
|
|
|
|
|
@LAYERS.register_module
|
|
class VanillaClassifier(nn.Module):
|
|
r"""Dense linear classifier.
|
|
|
|
Args:
|
|
in_features (int): size of each input sample.
|
|
num_classes (int): number of classes.
|
|
weight (:class:`torch.nn.Parameter`, optional): weight of the classifier, defaults to None.
|
|
dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None.
|
|
flatten (bool, optional): whether to flatten output tensor, defaults to True.
|
|
weight_initializer (:class:`typing.Callable`, optional):
|
|
The initializer of weight, defaults to kaiming uniform initializer.
|
|
bias_initializer (:class:`typing.Callable`, optional):
|
|
The initializer of bias, defaults to xavier uniform initializer.
|
|
|
|
More details about initializer please refer to
|
|
`init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
in_features: int,
|
|
num_classes: int,
|
|
weight: nn.Parameter = None,
|
|
bias: bool = True,
|
|
dtype: torch.dtype = None,
|
|
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
|
|
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1),
|
|
):
|
|
super().__init__()
|
|
self.in_features = in_features
|
|
self.num_classes = num_classes
|
|
|
|
if weight is not None:
|
|
self.weight = weight
|
|
self.has_weight = False
|
|
else:
|
|
self.weight = nn.Parameter(
|
|
torch.empty(self.num_classes, self.in_features, device=get_current_device(), dtype=dtype)
|
|
)
|
|
self.has_weight = True
|
|
if bias:
|
|
self.bias = nn.Parameter(torch.zeros(self.num_classes, device=get_current_device(), dtype=dtype))
|
|
else:
|
|
self.bias = None
|
|
|
|
self.reset_parameters(weight_initializer, bias_initializer)
|
|
|
|
def reset_parameters(self, weight_initializer, bias_initializer):
|
|
fan_in, fan_out = self.in_features, self.num_classes
|
|
|
|
if self.has_weight:
|
|
weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out)
|
|
|
|
if self.bias is not None:
|
|
bias_initializer(self.bias, fan_in=fan_in)
|
|
|
|
def forward(self, input_: Tensor) -> Tensor:
|
|
return F.linear(input_, self.weight, self.bias)
|
|
|
|
|
|
@LAYERS.register_module
|
|
class VanillaLayerNorm(nn.Module):
|
|
r"""
|
|
Layer Normalization for colossalai
|
|
|
|
Args:
|
|
normalized_shape (int): input shape from an expected input of size.
|
|
:math:`[* \times \text{normalized_shape}[0] \times \text{normalized_shape}[1]
|
|
\times \ldots \times \text{normalized_shape}[-1]]`
|
|
If a single integer is used, it is treated as a singleton list, and this module will
|
|
normalize over the last dimension which is expected to be of that specific size.
|
|
eps (float): a value added to the denominator for numerical stability, defaults to 1e-05.
|
|
bias (bool, optional): Whether to add a bias, defaults to ``True``.
|
|
dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None.
|
|
"""
|
|
|
|
def __init__(self, normalized_shape: int, eps=1e-05, bias=True, dtype=None):
|
|
super().__init__()
|
|
|
|
self.normalized_shape = (normalized_shape,)
|
|
self.variance_epsilon = eps
|
|
|
|
factory_kwargs = {"device": get_current_device(), "dtype": dtype}
|
|
|
|
self.weight = nn.Parameter(torch.ones(normalized_shape, **factory_kwargs))
|
|
if bias:
|
|
self.bias = nn.Parameter(torch.zeros(normalized_shape, **factory_kwargs))
|
|
else:
|
|
self.bias = None
|
|
|
|
def forward(self, x: Tensor) -> Tensor:
|
|
return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.variance_epsilon)
|
|
|
|
|
|
@LAYERS.register_module
|
|
class VanillaLinear(nn.Module):
|
|
"""Linear layer.
|
|
|
|
Args:
|
|
in_features (int): size of each input sample.
|
|
out_features (int): size of each output sample.
|
|
bias (bool, optional): If set to ``False``, the layer will not learn an additive bias, defaults to ``True``.
|
|
dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None.
|
|
skip_bias_add: bool (optional, default to be false).
|
|
weight_initializer (:class:`typing.Callable`, optional):
|
|
The initializer of weight, defaults to kaiming uniform initializer.
|
|
bias_initializer (:class:`typing.Callable`, optional):
|
|
The initializer of bias, defaults to xavier uniform initializer.
|
|
|
|
More details about ``initializer`` please refer to
|
|
`init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
in_features: int,
|
|
out_features: int,
|
|
bias: bool = True,
|
|
dtype: torch.dtype = None,
|
|
skip_bias_add: bool = False,
|
|
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
|
|
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1),
|
|
**kwargs,
|
|
) -> None:
|
|
super().__init__()
|
|
self.in_features = in_features
|
|
self.out_features = out_features
|
|
self.skip_bias_add = skip_bias_add
|
|
factory_kwargs = {"device": get_current_device(), "dtype": dtype}
|
|
self.weight = Parameter(torch.empty(self.out_features, self.in_features, **factory_kwargs))
|
|
if bias:
|
|
self.bias = Parameter(torch.empty(self.out_features, **factory_kwargs))
|
|
else:
|
|
self.bias = None
|
|
weight_initializer(self.weight, fan_in=in_features, fan_out=out_features)
|
|
if self.bias is not None:
|
|
bias_initializer(self.bias, fan_in=in_features)
|
|
|
|
def forward(self, input: Tensor) -> Tensor:
|
|
if not self.skip_bias_add:
|
|
return F.linear(input, self.weight, self.bias)
|
|
else:
|
|
return F.linear(input, self.weight), self.bias
|