ColossalAI/colossalai/legacy/nn/layer/parallel_1d/_utils.py

189 lines
4.9 KiB
Python

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import torch
import torch.distributed as dist
from colossalai.legacy.core import global_context as gpc
from colossalai.legacy.global_variables import tensor_parallel_env as env
from ..utils import divide
def set_parallel_input(input_parallel: bool):
env.parallel_input_1d = input_parallel
def get_parallel_input():
return env.parallel_input_1d
def vocab_range_from_per_partition_vocab_size(per_partition_vocab_size, rank):
index_f = rank * per_partition_vocab_size
index_l = index_f + per_partition_vocab_size
return index_f, index_l
def vocab_range_from_global_vocab_size(global_vocab_size, rank, world_size):
per_partition_vocab_size = divide(global_vocab_size, world_size)
return vocab_range_from_per_partition_vocab_size(per_partition_vocab_size, rank)
def _reduce(input_, parallel_mode):
# skip if only one rank involved
if gpc.get_world_size(parallel_mode) == 1:
return input_
group = gpc.get_cpu_group(parallel_mode) if input_.device.type == "cpu" else gpc.get_group(parallel_mode)
dist.all_reduce(input_, group=group)
return input_
def _split(input_, parallel_mode, dim=-1):
# skip if only one rank involved
world_size = gpc.get_world_size(parallel_mode)
if world_size == 1:
return input_
# Split along last dimension.
dim_size = input_.size(dim)
assert dim_size % world_size == 0, (
f"The dimension to split ({dim_size}) is not a multiple of world size ({world_size}), "
f"cannot split tensor evenly"
)
tensor_list = torch.split(input_, dim_size // world_size, dim=dim)
rank = gpc.get_local_rank(parallel_mode)
output = tensor_list[rank].contiguous()
return output
def _gather(input_, parallel_mode, dim=-1):
# skip if only one rank involved
world_size = gpc.get_world_size(parallel_mode)
if world_size == 1:
return input_
# all gather
rank = gpc.get_local_rank(parallel_mode)
tensor_list = [torch.empty_like(input_) for _ in range(world_size)]
tensor_list[rank] = input_
group = gpc.get_cpu_group(parallel_mode) if input_.device.type == "cpu" else gpc.get_group(parallel_mode)
torch.distributed.all_gather(tensor_list, input_, group=group)
# concat
output = torch.cat(tensor_list, dim=dim).contiguous()
return output
class _ReduceGrad(torch.autograd.Function):
"""
Pass the input to the model parallel region.
Args:
input_: input matrix.
parallel_mode: parallel mode.
"""
@staticmethod
def symbolic(graph, input_):
return input_
@staticmethod
def forward(ctx, input_, parallel_mode):
ctx.mode = parallel_mode
return input_
@staticmethod
def backward(ctx, grad_output):
return _reduce(grad_output, ctx.mode), None
class _ReduceInput(torch.autograd.Function):
"""
All-reduce the input from the model parallel region.
Args:
input_: input matrix.
parallel_mode: parallel mode.
"""
@staticmethod
def symbolic(graph, input_):
return _reduce(input_)
@staticmethod
def forward(ctx, input_, parallel_mode):
return _reduce(input_, parallel_mode)
@staticmethod
def backward(ctx, grad_output):
return grad_output, None
class _SplitForwardGatherBackward(torch.autograd.Function):
"""
Split the input and keep only the corresponding chuck to the rank.
Args:
input_: input matrix.
parallel_mode: parallel mode.
dim: dimension
"""
@staticmethod
def symbolic(graph, input_):
return _split(input_)
@staticmethod
def forward(ctx, input_, parallel_mode, dim):
ctx.mode = parallel_mode
ctx.dim = dim
return _split(input_, parallel_mode, dim)
@staticmethod
def backward(ctx, grad_output):
return _gather(grad_output, ctx.mode, ctx.dim), None, None
class _GatherForwardSplitBackward(torch.autograd.Function):
"""Gather the input from model parallel region and concatenate.
Args:
input_: input matrix.
parallel_mode: parallel mode.
dim: dimension
"""
@staticmethod
def symbolic(graph, input_):
return _gather(input_)
@staticmethod
def forward(ctx, input_, parallel_mode, dim):
ctx.mode = parallel_mode
ctx.dim = dim
return _gather(input_, parallel_mode, dim)
@staticmethod
def backward(ctx, grad_output):
return _split(grad_output, ctx.mode, ctx.dim), None, None
def reduce_grad(input_, parallel_mode):
return _ReduceGrad.apply(input_, parallel_mode)
def reduce_input(input_, parallel_mode):
return _ReduceInput.apply(input_, parallel_mode)
def split_forward_gather_backward(input_, parallel_mode, dim):
return _SplitForwardGatherBackward.apply(input_, parallel_mode, dim)
def gather_forward_split_backward(input_, parallel_mode, dim):
return _GatherForwardSplitBackward.apply(input_, parallel_mode, dim)