ColossalAI/colossalai/nn/layer/moe/layers.py

300 lines
13 KiB
Python

import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.distributed as dist
from colossalai.core import MOE_CONTEXT
from colossalai.utils import get_current_device
from ._operation import COL_MOE_KERNEL_FLAG, AllToAll, AllGather, ReduceScatter, MoeDispatch, MoeCombine, moe_cumsum
from .experts import MoeExperts
from .utils import autocast_softmax
from typing import Callable, Optional
from torch.distributed import ProcessGroup
class Top1Router(nn.Module):
"""Top1 router that returns the dispatch mask [s, e, c] and combine weight [s, e, c]
for routing usage. More deailted function can be found in the paper about Switch Transformer
of Google.
:param capacity_factor_train: Capacity factor in routing during training
:param capacity_factor_eval: Capacity factor in routing during evaluation
:param min_capacity: The minimum number of the capacity of each expert
:param select_policy: The policy about tokens selection
:param noisy_func: Noisy function used in logits
:param drop_tks: Whether drops tokens in evaluation
:type capacity_factor_train: float, optional
:type capacity_factor_eval: float, optional
:type min_capacity: int, optional
:type select_policy: str, optional
:type noisy_func: Callable, optional
:type drop_tks: bool, optional
"""
def __init__(self,
capacity_factor_train: float = 1.25,
capacity_factor_eval: float = 2.0,
min_capacity: int = 4,
select_policy: str = "first",
noisy_func: Callable = None,
drop_tks: bool = True):
super().__init__()
self.capacity_factor_train = capacity_factor_train
self.capacity_factor_eval = capacity_factor_eval
self.min_capacity = min_capacity
self.select_policy = select_policy
self.noisy_func = noisy_func
self.drop_tks = drop_tks
assert select_policy in {"first", "random"}
if select_policy == "random":
self.uniform = torch.distributions.uniform.Uniform(low=torch.tensor(0.0, device=get_current_device()),
high=torch.tensor(1.0,
device=get_current_device())).rsample
def get_capacity(
self,
logits_shape,
):
capacity_factor = self.capacity_factor_train if self.training else self.capacity_factor_eval
capacity = math.floor(capacity_factor * logits_shape[-2] / logits_shape[-1])
capacity += capacity % 2
capacity = max(capacity, self.min_capacity)
assert capacity > 0
return capacity
def forward(self, inputs: torch.Tensor, use_kernel: bool = False, ep_group: Optional[ProcessGroup] = None):
if self.noisy_func is not None and self.training:
inputs = self.noisy_func(inputs)
logits = autocast_softmax(inputs, dim=-1)
num_experts = logits.size(-1)
capacity = self.get_capacity(logits.shape)
top1_idx = torch.argmax(inputs, dim=-1)
mask = F.one_hot(top1_idx, num_classes=num_experts).to(torch.int32)
if self.training:
me = torch.mean(logits, dim=0)
ce = torch.mean(mask.float(), dim=0)
l_aux = num_experts * torch.sum(me * ce)
MOE_CONTEXT.add_loss(l_aux)
elif not self.drop_tks:
max_num = torch.max(torch.sum(mask, dim=0))
dist.all_reduce(max_num, op=dist.ReduceOp.MAX, group=ep_group)
capacity = max_num.item()
else:
pass
if self.select_policy == "random":
rand_mask = mask * self.uniform(mask.shape)
_, dispatch_idx = torch.topk(rand_mask, k=capacity, dim=0)
mask = mask * torch.zeros_like(mask).scatter_(0, dispatch_idx, 1)
ranks = moe_cumsum(mask)
elif self.select_policy == "first":
ranks = moe_cumsum(mask)
mask = mask * torch.lt(ranks, capacity)
else:
raise NotImplementedError("Not support such select policy yet.")
ranks = torch.sum(mask * ranks, dim=-1)
if use_kernel:
mask = torch.sum(mask, dim=-1)
mask = torch.stack([mask], dim=0).to(torch.int32)
dest_idx = torch.stack([top1_idx * capacity + ranks], dim=0).to(torch.int32)
return logits, mask, dest_idx, num_experts * capacity
else:
ranks = F.one_hot(ranks, num_classes=capacity)
weight = mask * logits.type_as(inputs)
combine_weights = weight.unsqueeze(2) * ranks.unsqueeze(1)
sec_mask = combine_weights.bool()
return combine_weights, sec_mask
class Top2Router(nn.Module):
"""Top2 router that returns the dispatch mask [s, e, c] and combine weight [s, e, c]
for routing usage. More deailted function can be found in the paper about ViT-MoE.
:param capacity_factor_train: Capacity factor in routing during training
:param capacity_factor_eval: Capacity factor in routing during evaluation
:param min_capacity: The minimum number of the capacity of each expert
:param noisy_func: Noisy function used in logits
:param drop_tks: Whether drops tokens in evaluation
:type capacity_factor_train: float, optional
:type capacity_factor_eval: float, optional
:type min_capacity: int, optional
:type noisy_func: Callable, optional
:type drop_tks: bool, optional
"""
def __init__(self,
capacity_factor_train: float = 1.25,
capacity_factor_eval: float = 2.0,
min_capacity: int = 4,
noisy_func: Callable = None,
drop_tks: bool = True):
super().__init__()
self.capacity_factor_train = capacity_factor_train
self.capacity_factor_eval = capacity_factor_eval
self.min_capacity = min_capacity
self.noisy_func = noisy_func
self.drop_tks = drop_tks
def get_capacity(
self,
logits_shape,
):
capacity_factor = self.capacity_factor_train if self.training else self.capacity_factor_eval
capacity = math.floor(capacity_factor * logits_shape[-2] / logits_shape[-1])
capacity += capacity % 2
capacity = max(capacity, self.min_capacity)
assert capacity > 0
return capacity
def forward(self, inputs: torch.Tensor, use_kernel: bool = False, ep_group: Optional[ProcessGroup] = None):
# inputs: [s, h]
if self.noisy_func is not None and self.training:
inputs = self.noisy_func(inputs)
logits = autocast_softmax(inputs, dim=-1) # logits: [s, e]
num_experts = logits.size(-1)
capacity = self.get_capacity(logits.shape)
top1_idx = torch.argmax(logits, dim=-1)
mask1 = F.one_hot(top1_idx, num_classes=num_experts).to(torch.int32)
logits_except1 = logits.masked_fill(mask1.bool(), float("-inf"))
top2_idx = torch.argmax(logits_except1, dim=-1)
mask2 = F.one_hot(top2_idx, num_classes=num_experts).to(torch.int32)
cmask = (mask1 + mask2) # loss: [s, e]
if self.training:
me = torch.mean(logits, dim=0)
ce = torch.mean(cmask.float(), dim=0)
l_aux = num_experts * torch.sum(me * ce) / 2.0 # div 2 to normalize it to 1
MOE_CONTEXT.add_loss(l_aux)
elif not self.drop_tks:
max_num = torch.max(torch.sum(cmask, dim=0))
dist.all_reduce(max_num, op=dist.ReduceOp.MAX, group=ep_group)
capacity = max_num.item()
else:
pass
rank1 = moe_cumsum(mask1) # rank1: [s, e]
rank2 = moe_cumsum(mask2)
rank2 += torch.sum(mask1, dim=-2, keepdim=True)
mask1 *= torch.lt(rank1, capacity)
mask2 *= torch.lt(rank2, capacity)
rank1 = torch.sum(mask1 * rank1, dim=-1)
rank2 = torch.sum(mask2 * rank2, dim=-1)
if use_kernel:
mask1 = torch.sum(mask1, dim=-1)
mask2 = torch.sum(mask2, dim=-1)
mask = torch.stack([mask1, mask2], dim=0).to(torch.int32)
dest_idx = torch.stack([top1_idx * capacity + rank1, top2_idx * capacity + rank2], dim=0).to(torch.int32)
return logits, mask, dest_idx, num_experts * capacity
else:
weight1 = mask1 * logits.type_as(inputs)
weight2 = mask2 * logits.type_as(inputs)
rank1_sc = F.one_hot(rank1, num_classes=capacity)
rank2_sc = F.one_hot(rank2, num_classes=capacity)
cb_weight1 = weight1.unsqueeze(2) * rank1_sc.unsqueeze(1)
cb_weight2 = weight2.unsqueeze(2) * rank2_sc.unsqueeze(1)
cb_weight = cb_weight1 + cb_weight2
sec_mask = cb_weight.bool()
return cb_weight, sec_mask
class MoeLayer(nn.Module):
"""A MoE layer, that puts its input tensor to its gate and uses the output logits
to router all tokens, is mainly used to exchange all tokens for every expert across
the moe tensor group by all to all comunication. Then it will get the output of all
experts and exchange the output. At last returns the output of the moe system.
:param dim_model: Dimension of model
:param num_experts: The number of experts
:param router: Instance of router used in routing
:param experts: Instance of experts generated by Expert
:type dim_model: int
:type num_experts: int
:type router: nn.Module
:type experts: nn.Module
"""
def __init__(self, dim_model: int, num_experts: int, router: nn.Module, experts: MoeExperts):
super().__init__()
self.d_model = dim_model
self.num_experts = num_experts
self.gate = nn.Linear(dim_model, num_experts, bias=False, device=get_current_device())
self.router = router
self.experts = experts
self.use_kernel = True if COL_MOE_KERNEL_FLAG and MOE_CONTEXT.use_kernel_optim else False
self.ep_group = experts.dist_info.ep_group
self.ep_size = experts.dist_info.ep_size
self.num_local_experts = experts.num_local_experts
def a2a_process(self, dispatch_data: torch.Tensor):
expert_input = AllToAll.apply(dispatch_data, self.ep_group)
input_shape = expert_input.shape
expert_input = expert_input.reshape(self.ep_size, self.num_local_experts, -1, self.d_model)
expert_output = self.experts(expert_input)
expert_output = expert_output.reshape(input_shape)
expert_output = AllToAll.apply(expert_output, self.ep_group)
return expert_output
def tp_process(self, dispatch_data: torch.Tensor):
expert_in = AllGather.apply(dispatch_data, self.ep_group)
expert_out = self.experts(expert_in)
expert_out = ReduceScatter.apply(expert_out, self.ep_group)
return expert_out
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
tokens = inputs.reshape(-1, self.d_model)
gate_output = self.gate(tokens)
router_res = self.router(inputs=gate_output, use_kernel=self.use_kernel, ep_group=self.ep_group)
if self.use_kernel:
dispatch_data = MoeDispatch.apply(tokens, *router_res[1:])
dispatch_data = dispatch_data.reshape(self.num_experts, -1, self.d_model)
else:
sec_mask_f = router_res[1].type_as(inputs)
dispatch_data = torch.matmul(sec_mask_f.permute(1, 2, 0), tokens)
# dispatch_data [e, c, h]
if self.experts.comm_name == "all_to_all":
expert_output = self.a2a_process(dispatch_data)
elif self.experts.comm_name == "all_gather":
expert_output = self.tp_process(dispatch_data)
else:
raise NotImplementedError("This kind of communication has not been implemented yet.\n Please use Experts "
"build function.")
# expert_output [e, c, h]
if self.use_kernel:
expert_output = expert_output.reshape(-1, self.d_model)
ans = MoeCombine.apply(expert_output, *router_res)
else:
combine_weights = router_res[0]
combine_weights = combine_weights.view(combine_weights.shape[0], -1)
expert_output = expert_output.view(-1, expert_output.shape[-1])
ans = torch.matmul(combine_weights, expert_output)
ans = ans.reshape(inputs.shape)
return ans