mirror of https://github.com/hpcaitech/ColossalAI
88 lines
2.4 KiB
Python
88 lines
2.4 KiB
Python
#!/usr/bin/env python
|
|
# -*- encoding: utf-8 -*-
|
|
|
|
import torch
|
|
|
|
from colossalai.registry import MODELS
|
|
from colossalai.nn.model.model_from_config import ModelFromConfig
|
|
|
|
|
|
@MODELS.register_module
|
|
class VisionTransformerFromConfig(ModelFromConfig):
|
|
"""Vision Transformer from
|
|
`"An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale" <https://arxiv.org/pdf/2010.11929>`_.
|
|
|
|
"""
|
|
|
|
def __init__(self,
|
|
embedding_cfg: dict,
|
|
norm_cfg: dict,
|
|
block_cfg: dict,
|
|
head_cfg: dict,
|
|
token_fusion_cfg: dict = None,
|
|
embed_dim=768,
|
|
depth=12,
|
|
drop_path_rate=0.,
|
|
tensor_splitting_cfg: dict = None):
|
|
super().__init__()
|
|
self.embed_dim = embed_dim
|
|
self.num_tokens = 1
|
|
self.tensor_splitting_cfg = tensor_splitting_cfg
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)
|
|
] # stochastic depth decay rule
|
|
if token_fusion_cfg is None:
|
|
token_fusion_cfg = []
|
|
else:
|
|
token_fusion_cfg = [token_fusion_cfg]
|
|
|
|
self.layers_cfg = [
|
|
embedding_cfg,
|
|
|
|
# input tensor splitting
|
|
*self._generate_tensor_splitting_cfg(),
|
|
*token_fusion_cfg,
|
|
|
|
# blocks
|
|
*self._generate_block_cfg(
|
|
dpr=dpr, block_cfg=block_cfg, depth=depth),
|
|
|
|
# norm
|
|
norm_cfg,
|
|
|
|
# head
|
|
head_cfg
|
|
]
|
|
|
|
def _fuse_tokens(self, x):
|
|
cls_token = self.cls_token.expand(x.shape[0], -1, -1)
|
|
x = torch.cat((cls_token, x), dim=1)
|
|
return x
|
|
|
|
def _generate_block_cfg(self, dpr, depth, block_cfg):
|
|
blocks_cfg = []
|
|
|
|
for i in range(depth):
|
|
_cfg = block_cfg.copy()
|
|
_cfg['droppath_cfg']['drop_path'] = dpr[i]
|
|
blocks_cfg.append(_cfg)
|
|
|
|
return blocks_cfg
|
|
|
|
def _generate_tensor_splitting_cfg(self):
|
|
if self.tensor_splitting_cfg:
|
|
return [self.tensor_splitting_cfg]
|
|
else:
|
|
return []
|
|
|
|
def forward(self, x): # [512, 3, 32, 32]
|
|
for layer in self.layers:
|
|
if isinstance(x, tuple):
|
|
x = layer(*x)
|
|
else:
|
|
x = layer(x)
|
|
return x # [256, 5]
|
|
|
|
def init_weights(self):
|
|
# TODO: add init weights
|
|
pass
|