mirror of https://github.com/hpcaitech/ColossalAI
310 lines
15 KiB
Python
310 lines
15 KiB
Python
import functools
|
|
from collections import OrderedDict
|
|
from typing import Any, Optional
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
import torch.nn as nn
|
|
from colossalai.context.parallel_mode import ParallelMode
|
|
from colossalai.core import global_context as gpc
|
|
from colossalai.engine.ophooks import register_ophooks_recursively
|
|
from colossalai.engine.ophooks.zero_hook import ZeroHook
|
|
from colossalai.engine.paramhooks import BaseParamHookMgr
|
|
from colossalai.logging import get_dist_logger
|
|
from colossalai.utils.memory_tracer.memstats_collector import MemStatsCollector
|
|
from colossalai.utils.memory_tracer.model_data_memtracer import \
|
|
GLOBAL_MODEL_DATA_TRACER
|
|
from colossalai.utils.memory_utils.utils import (colo_cuda_memory_capacity, colo_model_data_move_to_cpu)
|
|
from colossalai.zero.shard_utils import BaseShardStrategy
|
|
from colossalai.zero.sharded_model.reduce_scatter import ReduceScatterBucketer
|
|
from torch.distributed import ProcessGroup
|
|
from torch.nn.parameter import Parameter
|
|
|
|
from ._utils import (cast_float_arguments, cast_tensor_to_fp16, cast_tensor_to_fp32, chunk_and_pad, free_storage,
|
|
get_gradient_predivide_factor)
|
|
|
|
|
|
class ShardedModelV2(nn.Module):
|
|
"""
|
|
A wrapper for the PyTorch module shards the model parameters among multiple GPU memory.
|
|
Only 1/#nproc of parameters, gradients are stored in local CUDA memory, so forward and backward
|
|
passes can be executed with limited CUDA memory budget.
|
|
|
|
Note that you must use `ShardedModelV2` with `ShardedOptimizerV2`.
|
|
|
|
Args:
|
|
module (nn.Module): A sharded module, which must be initialized by `ZeroInitContext`.
|
|
shard_strategy (BaseShardStrategy): A shard strategy to manage shard behavior.
|
|
process_group (Optional[ProcessGroup], optional): Data parallel process group. Defaults to None.
|
|
reduce_scatter_process_group (Optional[ProcessGroup], optional): Reduce-scatter process group.
|
|
Generally, it should be `None`, and it's the same as `process_group`. Defaults to None.
|
|
reduce_scatter_bucket_size_mb (int, optional): Reduce-scatter bucket size in *MB*. Defaults to 25.
|
|
fp32_reduce_scatter (bool, optional): If set to `True`, gradients are forced to FP32 before reduce-scatter. Defaults to False.
|
|
offload_config (Optional[dict], optional): We currently only support CPU offload. Set to `{"device": "cpu"}` to enable CPU offload. Defaults to None.
|
|
gradient_predivide_factor (Optional[float], optional): Gradient is divived by this value before reduce-scatter. Defaults to 1.0.
|
|
use_memory_tracer (bool, optional): Whether to use memoty tracer. Defaults to False.
|
|
reuse_fp16_shard (bool, optional): Whether to reuse fp16 shard for param and grad.
|
|
Enabling this can reduce GPU memory usage, but you have to make sure you disable it when using gradient accumulation.
|
|
In this mode, grad will be fp16. Make sure your optimizer supports mixed precision (fp32 param and fp16 grad).
|
|
We find that PyTorch's optimizers don't support mixed precision,
|
|
so we recommend you enable this only when using our CPUAdam with CPU offload. Defaults to False.
|
|
"""
|
|
|
|
def __init__(self,
|
|
module: nn.Module,
|
|
shard_strategy: BaseShardStrategy,
|
|
process_group: Optional[ProcessGroup] = None,
|
|
reduce_scatter_process_group: Optional[ProcessGroup] = None,
|
|
reduce_scatter_bucket_size_mb: int = 25,
|
|
fp32_reduce_scatter: bool = False,
|
|
offload_config: Optional[dict] = None,
|
|
gradient_predivide_factor: Optional[float] = 1.0,
|
|
use_memory_tracer: bool = False,
|
|
reuse_fp16_shard: bool = False):
|
|
super().__init__()
|
|
self.logger = get_dist_logger()
|
|
|
|
# We force users to use ZeroInitContext
|
|
sharded = []
|
|
unsharded = []
|
|
for param in module.parameters():
|
|
assert hasattr(param, 'col_attr'), 'You must use ZeroInitContext to init your module first.'
|
|
sharded.append(param.col_attr.param_is_sharded)
|
|
unsharded.append(not param.col_attr.param_is_sharded)
|
|
assert all(sharded) or all(
|
|
unsharded), 'Parameters must be all sharded or all unsharded! Parameters are partially sharded now.'
|
|
self.shard_param = all(sharded)
|
|
self.module = module
|
|
|
|
self.process_group = process_group or gpc.get_group(ParallelMode.DATA)
|
|
self.reduce_scatter_process_group = reduce_scatter_process_group or self.process_group
|
|
self.world_size = dist.get_world_size(self.process_group)
|
|
self.rank = dist.get_rank(self.process_group)
|
|
self.shard_strategy = shard_strategy
|
|
|
|
# Init Memory Statistics Collector
|
|
self._use_memory_tracer = use_memory_tracer
|
|
if self._use_memory_tracer:
|
|
GLOBAL_MODEL_DATA_TRACER.register_model(self)
|
|
self._memstats_collector = MemStatsCollector()
|
|
else:
|
|
self._memstats_collector = None
|
|
self._iter_cnter = 0
|
|
|
|
# Register hooks
|
|
self._ophook_list = [ZeroHook(self.shard_strategy, self._memstats_collector, self.process_group)]
|
|
register_ophooks_recursively(self.module, self._ophook_list)
|
|
self.param_hook_mgr = BaseParamHookMgr(list(self.module.parameters()))
|
|
self.param_hook_mgr.register_backward_hooks(self._grad_post_backward_hook)
|
|
|
|
self.fp32_reduce_scatter = fp32_reduce_scatter
|
|
self._cpu_offload: bool = offload_config.get('device', None) == 'cpu' if offload_config else False
|
|
for param in module.parameters():
|
|
# Init `offload_grad`
|
|
param.col_attr.offload_grad = self._cpu_offload
|
|
|
|
# We find if gradient_predivide_factor != 1.0, there may be wrong precision problem
|
|
# So we use 1.0 as the default gradient_predivide_factor
|
|
# However, if you set gradient_predivide_factor to None, we will set
|
|
# gradient_predivide_factor to a value >= 1.0 automatically
|
|
self.gradient_predivide_factor: float = gradient_predivide_factor if \
|
|
gradient_predivide_factor is not None else \
|
|
get_gradient_predivide_factor(self.world_size)
|
|
self.gradient_postdivide_factor: float = self.world_size / self.gradient_predivide_factor
|
|
|
|
self.comm_stream: torch.cuda.Stream = torch.cuda.Stream()
|
|
self.reducer = ReduceScatterBucketer(reduce_scatter_bucket_size_mb)
|
|
self._require_backward_grad_sync: bool = True
|
|
|
|
self._cuda_margin_space = 0
|
|
self.reuse_fp16_shard = reuse_fp16_shard
|
|
|
|
@property
|
|
def use_memory_tracer(self):
|
|
return self._use_memory_tracer
|
|
|
|
@property
|
|
def cuda_margin_space(self):
|
|
return self._cuda_margin_space
|
|
|
|
@property
|
|
def cpu_offload(self):
|
|
return self._cpu_offload
|
|
|
|
def forward(self, *args: Any, **kwargs: Any) -> torch.Tensor:
|
|
if self._iter_cnter == 0 and self._memstats_collector:
|
|
# the opeartion will affect the flag in ZeroHook
|
|
self._memstats_collector.start_collection()
|
|
args, kwargs = cast_float_arguments(cast_tensor_to_fp16, *args, **kwargs)
|
|
outputs = self.module(*args, **kwargs)
|
|
return outputs
|
|
|
|
def backward(self, loss):
|
|
loss.backward()
|
|
self._post_backward_operations()
|
|
for ophook in self._ophook_list:
|
|
ophook.post_iter()
|
|
|
|
def backward_by_grad(self, tensor, grad):
|
|
torch.autograd.backward(tensors=tensor, grad_tensors=grad)
|
|
self._post_backward_operations()
|
|
for ophook in self._ophook_list:
|
|
ophook.post_iter()
|
|
|
|
def _update_memstats(self):
|
|
if self._iter_cnter == 0 and self._memstats_collector:
|
|
self._memstats_collector.finish_collection()
|
|
self.logger.debug(f'model data cuda, {self._memstats_collector.model_data_cuda}')
|
|
self.logger.debug(f'non-model data cuda, {self._memstats_collector.non_model_data_cuda}')
|
|
|
|
if self._memstats_collector:
|
|
self._memstats_collector.reset_sampling_cnter()
|
|
# cuda margin space = cuda mem capacity - max fwd/bwd cuda mem used.
|
|
# the way to calculate margin space is based on the assumption that
|
|
# model data is fixed in cuda during training.
|
|
# cuda margin space can be used to store OS.
|
|
self._cuda_margin_space = colo_cuda_memory_capacity() - max(self._memstats_collector.overall_cuda)
|
|
self._iter_cnter += 1
|
|
|
|
@torch.no_grad()
|
|
def _post_backward_operations(self) -> None:
|
|
"""
|
|
The method includes operations required to be processed after backward
|
|
"""
|
|
self._update_memstats()
|
|
|
|
if self._require_backward_grad_sync:
|
|
# Flush any unreduced buckets in the post_backward stream.
|
|
with torch.cuda.stream(self.comm_stream):
|
|
self.reducer.flush()
|
|
torch.cuda.current_stream().wait_stream(self.comm_stream)
|
|
if self._cpu_offload:
|
|
# Wait for the non-blocking GPU -> CPU grad transfers to finish.
|
|
torch.cuda.current_stream().synchronize()
|
|
self.reducer.free()
|
|
# In case some post bwd hook is not fired
|
|
if self.shard_param:
|
|
tensor_list = []
|
|
for p in self.module.parameters():
|
|
if not p.col_attr.param_is_sharded:
|
|
tensor_list.append(p.col_attr.sharded_data_tensor)
|
|
self.shard_strategy.shard(tensor_list, self.process_group)
|
|
for p in self.module.parameters():
|
|
p.col_attr.bwd_count = 0
|
|
if not p.requires_grad:
|
|
continue
|
|
# Leave the gradient accumulation state as-is if not synchronizing this pass. This ensures p.grad
|
|
# remains the unsharded gradient accumulated from prior no-sync passes, and _saved_grad_shard
|
|
# remains the sharded gradient from the last synchronized pass. This also allows interleaved no-sync and
|
|
# sync passes, if desired.
|
|
if not self._require_backward_grad_sync:
|
|
continue
|
|
# Write grad back to p.grad and set p.col_attr.grad to None
|
|
# As sharded optimizer only update a shard of param,
|
|
# no matter whether we shard param in sharded model
|
|
# We have to make sure the grad is a flat tensor shard
|
|
# If world size == 1 and sharded param,
|
|
# the shape `grad` is the same as unsharded param
|
|
# So we can just use `view(-1)` to ensure grad is a flat tensor shard
|
|
if self.reuse_fp16_shard:
|
|
grad_payload = p.col_attr.sharded_data_tensor.payload
|
|
else:
|
|
grad_payload = cast_tensor_to_fp32(p.col_attr.fp16_grad)
|
|
if p.col_attr.offload_grad:
|
|
colo_model_data_move_to_cpu(grad_payload)
|
|
if p.col_attr.fp32_grad is not None:
|
|
assert not self.reuse_fp16_shard, 'Gradien accumulation is not supported when reuse_fp16_shard=True'
|
|
p.col_attr.fp32_grad.add_(grad_payload.view_as(p.col_attr.fp32_grad))
|
|
grad_payload = p.col_attr.fp32_grad
|
|
p.grad.data = grad_payload
|
|
p.col_attr.fp16_grad = None
|
|
p.col_attr.fp32_grad = None
|
|
|
|
@torch.no_grad()
|
|
def _grad_post_backward_hook(self, param: Parameter, grad: torch.Tensor) -> Optional[torch.Tensor]:
|
|
"""
|
|
At the start of :func:`_grad_post_backward_hook`, ``param.grad`` contains the
|
|
full gradient for the local batch. The reduce-scatter op will save
|
|
a single shard of the summed gradient across all
|
|
GPUs to param.col_attr.grad. This shard will align with the current GPU rank. For example::
|
|
|
|
before reduce_scatter:
|
|
param.grad (GPU #0): [1, 2, 3, 4]
|
|
param.grad (GPU #1): [5, 6, 7, 8]
|
|
|
|
after reduce_scatter:
|
|
param.grad (GPU #0): [6, 8] # 1+5, 2+6
|
|
param.grad (GPU #1): [10, 12] # 3+7, 4+8
|
|
|
|
The local GPU's ``optim.step`` is responsible for updating a single
|
|
shard of params, also corresponding to the current GPU's rank. This
|
|
alignment is created by `param.col_attr.grad`, which ensures that
|
|
the local optimizer only sees the relevant parameter shard.
|
|
"""
|
|
if grad is None:
|
|
return
|
|
assert not grad.requires_grad, 'ShardedModel only works with gradients that don\'t require gradients'
|
|
if not self._require_backward_grad_sync:
|
|
return
|
|
self.comm_stream.wait_stream(torch.cuda.current_stream())
|
|
with torch.cuda.stream(self.comm_stream):
|
|
new_grad = grad.clone()
|
|
if self.fp32_reduce_scatter:
|
|
new_grad.data = new_grad.data.to(param.dtype)
|
|
if self.gradient_predivide_factor > 1.0:
|
|
# Average grad by world_size for consistency with PyTorch DDP.
|
|
new_grad.data.div_(self.gradient_predivide_factor)
|
|
orig_grad_data = new_grad.data
|
|
if self.world_size > 1:
|
|
grad_chunks = chunk_and_pad(orig_grad_data, self.reduce_scatter_process_group.size())
|
|
self.reducer.reduce_scatter_async(grad_chunks,
|
|
group=self.reduce_scatter_process_group,
|
|
callback_fn=functools.partial(self._reduce_scatter_callback, param))
|
|
else:
|
|
self._reduce_scatter_callback(param, new_grad)
|
|
orig_grad_data.record_stream(self.comm_stream)
|
|
torch.cuda.current_stream().wait_stream(self.comm_stream)
|
|
empty_grad = torch.empty_like(grad)
|
|
free_storage(empty_grad)
|
|
return empty_grad
|
|
|
|
def _reduce_scatter_callback(self, param: Parameter, reduced_grad: torch.Tensor) -> None:
|
|
reduced_grad = reduced_grad.view(-1)
|
|
if self.gradient_postdivide_factor > 1:
|
|
# Average grad by world_size for consistency with PyTorch DDP.
|
|
reduced_grad.data.div_(self.gradient_postdivide_factor)
|
|
if self.reuse_fp16_shard:
|
|
param.col_attr.sharded_data_tensor.reset_payload(reduced_grad.data)
|
|
param.col_attr.sharded_data_tensor.is_sharded = True
|
|
else:
|
|
param.col_attr.fp16_grad = reduced_grad.data
|
|
|
|
def state_dict(self, destination=None, prefix='', keep_vars=False) -> 'OrderedDict[str, torch.Tensor]':
|
|
self.shard_strategy.gather([p.col_attr.sharded_data_tensor for p in self.module.parameters()],
|
|
self.process_group)
|
|
prev_params = {}
|
|
for p in self.module.parameters():
|
|
prev_params[p] = p.data
|
|
p.data = p.col_attr.sharded_data_tensor.payload
|
|
gathered_state_dict = self.module.state_dict(destination, prefix, keep_vars)
|
|
self.shard_strategy.shard([p.col_attr.sharded_data_tensor for p in self.module.parameters()],
|
|
self.process_group)
|
|
for p in self.module.parameters():
|
|
p.data = prev_params[p]
|
|
return gathered_state_dict
|
|
|
|
def load_state_dict(self, state_dict: 'OrderedDict[str, torch.Tensor]', strict: bool = True):
|
|
raise NotImplementedError
|
|
|
|
def __getitem__(self, idx: int):
|
|
assert isinstance(self.module, nn.ModuleList)
|
|
return self.module[idx]
|
|
|
|
def __len__(self):
|
|
assert isinstance(self.module, nn.ModuleList)
|
|
return len(self.module)
|
|
|
|
def __iter__(self):
|
|
assert isinstance(self.module, nn.ModuleList)
|
|
return iter(self.module)
|