ColossalAI/colossalai/zero/init_ctx/init_context.py

238 lines
9.1 KiB
Python

import contextlib
import functools
from typing import Optional
import torch
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.context.singleton_meta import SingletonMeta
from colossalai.logging import get_dist_logger
from colossalai.zero.shard_utils import BaseShardStrategy
from colossalai.zero.sharded_model._utils import cast_tensor_to_fp16
from colossalai.zero.sharded_param import ShardedParamV2
from torch.distributed import ProcessGroup
def _substitute_init_recursively(cls, func):
for subcls in cls.__subclasses__():
_substitute_init_recursively(subcls, func)
func(subcls)
class InsertPostInitMethodToModuleSubClasses(object):
def __init__(self):
pass
def __enter__(self):
r"""
Enter the context scope.
"""
def preprocess_after(f):
@functools.wraps(f)
def wrapper(module: torch.nn.Module, *args, **kwargs):
f(module, *args, **kwargs)
self._post_init_method(module)
return wrapper
def _enable_class(cls):
cls._old_init = cls.__init__
cls.__init__ = preprocess_after(cls.__init__)
# The function is called during init subclass.
def _init_subclass(cls, **kwargs):
cls.__init__ = preprocess_after(cls.__init__)
# Replace .__init__() for all existing subclasses of torch.nn.Module
# Excution self._post_init_method after the default init function.
_substitute_init_recursively(torch.nn.modules.module.Module, _enable_class)
# holding on to the current __init__subclass__ for exit
torch.nn.modules.module.Module._old_init_subclass = (torch.nn.modules.module.Module.__init_subclass__)
# Replace .__init__() for future subclasses of torch.nn.Module
torch.nn.modules.module.Module.__init_subclass__ = classmethod(_init_subclass)
self._pre_context_exec()
def __exit__(self, exc_type, exc_value, traceback):
def _disable_class(cls):
cls.__init__ = cls._old_init
# Replace .__init__() for all existing subclasses of torch.nn.Module
_substitute_init_recursively(torch.nn.modules.module.Module, _disable_class)
# Replace .__init__() for future subclasses of torch.nn.Module
torch.nn.modules.module.Module.__init_subclass__ = (torch.nn.modules.module.Module._old_init_subclass)
self._post_context_exec()
# Now that we cleaned up the metaclass injection, raise the exception.
if exc_type is not None:
return False
# To be implemented by inheriting classes
def _post_init_method(self, module):
pass
def _pre_context_exec(self):
pass
def _post_context_exec(self):
pass
class ZeroContextConfig(object):
"""The configuration used to control zero context initialization.
Args:
shard_param (bool, optional): Is param sharded after exiting the context. Defaults to False.
rm_torch_payload_on_the_fly (bool, optional): If set to `True`, remove tensor payload on `param.data` after module init finished.
This will reduce memory usage when initializing model.
But it's not suitable for all models, especially when there are `weight init` operations in `__init__`.
If set to `False`, remove tensor payload on param.data afther the context exist.
This is used when you add some logic to operate tensors in __init__ of module.
See torchvision resnet18. Defaults to False.
"""
def __init__(self, shard_param: bool = False, rm_torch_payload_on_the_fly: bool = False):
super().__init__()
self.shard_param: bool = shard_param
self.rm_torch_payload_on_the_fly: bool = rm_torch_payload_on_the_fly
class ZeroInitContext(InsertPostInitMethodToModuleSubClasses):
"""A context to initialize model.
1. Convert the model to fp16.
2. The paramaters of the module are adapted to type ShardedParameter.
3. Shard the param and grad according to flags.
Args:
target_device (torch.device): The device where param data after exiting the context.
shard_strategy (BaseShardStrategy): Shard strategy instance.
shard_param (bool, optional): Is param sharded after exiting the context. Defaults to False.
rm_torch_payload_on_the_fly (bool, optional): If set to `True`, remove tensor payload on `param.data` after module init finished.
This will reduce memory usage when initializing model.
But it's not suitable for all models, especially when there are `weight init` operations in `__init__`.
If set to `False`, remove tensor payload on param.data afther the context exist.
This is used when you add some logic to operate tensors in __init__ of module.
See torchvision resnet18. Defaults to False.
model_numel_tensor (torch.Tensor, optional): A tensor which will store the number of elements of model. Defaults to torch.zeros(1, dtype=torch.int).
dp_process_group (Optional[ProcessGroup], optional): Data parallel process group. Defaults to None.
"""
def __init__(self,
target_device: torch.device,
shard_strategy: BaseShardStrategy,
shard_param: bool = False,
rm_torch_payload_on_the_fly: bool = False,
model_numel_tensor: torch.Tensor = torch.zeros(1, dtype=torch.long),
dp_process_group: Optional[ProcessGroup] = None):
super().__init__()
self.target_device = target_device
self.shard_strategy = shard_strategy
self.initialized_param_list = []
self.model_numel_tensor = model_numel_tensor
self.dp_process_group = dp_process_group or gpc.get_group(ParallelMode.DATA)
self.config = ZeroContextConfig(shard_param=shard_param,
rm_torch_payload_on_the_fly=rm_torch_payload_on_the_fly)
ZeroContextMgr().current_context = self
@property
def shard_param(self):
return self.config.shard_param
@property
def rm_torch_payload_on_the_fly(self):
return self.config.rm_torch_payload_on_the_fly
def _pre_context_exec(self):
"""
The Callback function when entering the context
"""
self.logger = get_dist_logger("ZeroInitContext")
def _post_context_exec(self):
"""The callback function when exiting context.
"""
if not self.rm_torch_payload_on_the_fly:
for param in self.initialized_param_list:
assert hasattr(param, 'col_attr')
param.col_attr.remove_torch_payload()
del self.initialized_param_list
def _post_init_method(self, module: torch.nn.Module):
"""
The function to call at the end of the constructor of each module.
NOTE() The module may be passed to this function multiple times.
"""
def half_fn(t: torch.Tensor):
return t.half() if t.is_floating_point() else t
for param in module.parameters(recurse=False):
# avoid adapting a param to ShardedParam twice
if hasattr(param, 'col_attr'):
continue
self.model_numel_tensor += param.numel()
# convert parameters to half
param_half = half_fn(param)
param.data = param_half
if param.grad is not None:
grad_half = half_fn(param.grad)
param.grad.data = grad_half
# move torch parameters to the target device
target_device = self.target_device
param.data = param.data.to(target_device)
if param.grad is not None:
param.grad = param.grad.to(target_device)
param.col_attr = ShardedParamV2(param, rm_torch_payload=self.rm_torch_payload_on_the_fly)
if self.shard_param:
self.shard_strategy.shard([param.col_attr.sharded_data_tensor], self.dp_process_group)
self.initialized_param_list.append(param)
# We must cast buffers
# If we use BN, buffers may be on CPU and Float
# We must cast them
for buffer in module.buffers(recurse=False):
buffer.data = buffer.data.to(device=torch.cuda.current_device())
buffer.data = cast_tensor_to_fp16(buffer.data)
class ZeroContextMgr(metaclass=SingletonMeta):
current_context: Optional[ZeroInitContext] = None
@contextlib.contextmanager
def hijack_context_config(self, **kwargs):
if self.current_context is None:
yield
else:
old_config = self.current_context.config
self.current_context.config = ZeroContextConfig(**kwargs)
yield
self.current_context.config = old_config
def no_shard_zero_context():
return ZeroContextMgr().hijack_context_config(shard_param=False, rm_torch_payload_on_the_fly=False)
def no_shard_zero_decrator(init_func):
def _no_shard(*args, **kwargs):
with no_shard_zero_context():
init_func(*args, **kwargs)
return _no_shard