You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/tests/test_infer/test_ops/triton/test_kvcache_copy.py

177 lines
6.2 KiB

import pytest
import torch
from packaging import version
from colossalai.inference.modeling.layers.attention import copy_to_cache
from colossalai.kernel.triton import copy_kv_to_blocked_cache
from colossalai.utils import get_current_device
from tests.test_infer.test_ops.triton.kernel_utils import generate_caches_and_block_tables_v2, mock_alloc_single_token
try:
import triton # noqa
HAS_TRITON = True
except ImportError:
HAS_TRITON = False
print("please install triton from https://github.com/openai/triton")
TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse("11.4")
HEAD_DIM = 128
def prepare_data(
bsz,
num_kv_heads,
head_dim,
block_size,
max_num_blocks_per_seq,
same_context_len,
max_seq_len,
device,
dtype=torch.float16,
):
# past_kv_seq_lengths in this test records the previous kv seq len
# (not incorporating the current input whose seq len is 1)
past_kv_seq_lengths = (
torch.tensor([max_seq_len - 1 for _ in range(bsz)], dtype=torch.int32, device=device)
if same_context_len
else torch.randint(low=1, high=max_seq_len - 1, size=(bsz,), dtype=torch.int32, device=device)
)
num_tokens = torch.sum(past_kv_seq_lengths).item()
kv_size = (num_tokens, 2 * num_kv_heads, head_dim)
kv_unpad = torch.empty(size=kv_size, dtype=dtype, device=device).normal_(mean=0.0, std=0.5)
k_unpad, v_unpad = torch.split(kv_unpad, [num_kv_heads, num_kv_heads], dim=-2)
k_cache, v_cache, block_tables = generate_caches_and_block_tables_v2(
k_unpad, v_unpad, past_kv_seq_lengths, bsz, max_num_blocks_per_seq, block_size, dtype=dtype, device=device
)
block_tables = block_tables.to(device=device)
new_k = torch.randn((bsz, 1, num_kv_heads, head_dim), dtype=dtype, device=device)
new_v = torch.randn((bsz, 1, num_kv_heads, head_dim), dtype=dtype, device=device)
# mock allocating blocks for the new k/v and update block tables
mock_alloc_single_token(block_tables, past_kv_seq_lengths, block_size)
# kv seq len = past kv seq len + seq len (1 during decoding stage)
kv_seq_lengths = past_kv_seq_lengths + 1
return new_k, new_v, k_cache, v_cache, kv_seq_lengths, block_tables
@pytest.mark.skipif(not (HAS_TRITON and TRITON_CUDA_SUPPORT), reason="requires triton")
@pytest.mark.parametrize("bsz", [4, 7, 32])
@pytest.mark.parametrize("block_size", [16, 32, 64])
@pytest.mark.parametrize("max_num_blocks_per_seq", [8, 32])
@pytest.mark.parametrize("num_kv_heads", [16])
@pytest.mark.parametrize("same_context_len", [True, False])
def test_copy_kv_to_caches(
bsz: int,
block_size: int,
max_num_blocks_per_seq: int,
num_kv_heads: int,
same_context_len: bool,
):
torch.manual_seed(123)
torch.cuda.empty_cache()
torch.cuda.synchronize()
torch.cuda.reset_peak_memory_stats()
max_seq_len = block_size * max_num_blocks_per_seq
dtype = torch.float16
device = get_current_device()
new_k, new_v, k_cache, v_cache, kv_seq_lengths, block_tables = prepare_data(
bsz,
num_kv_heads,
HEAD_DIM,
block_size,
max_num_blocks_per_seq,
same_context_len,
max_seq_len,
device=device,
dtype=dtype,
)
# k_cache_torch = k_cache.clone().detach()
# copy_to_cache(new_k, k_cache_torch, lengths=kv_seq_lengths, block_tables=block_tables, type="decoding")
copy_kv_to_blocked_cache(new_k, new_v, k_cache, v_cache, kv_seq_lengths, block_tables)
past_kv_seq_len = kv_seq_lengths - 1
target_block_ids = block_tables[range(0, block_tables.size(0)), past_kv_seq_len // block_size]
offsets_in_block = past_kv_seq_len % block_size
k_target = k_cache[target_block_ids, :, offsets_in_block, :]
k_source = new_k.squeeze()
v_target = v_cache[target_block_ids, :, offsets_in_block, :]
v_source = new_v.squeeze()
assert k_target.shape == k_source.shape
assert torch.equal(k_target, k_source)
assert v_target.shape == v_source.shape
assert torch.equal(v_target, v_source)
# target_torch = k_cache_copy[target_block_ids, :, offsets_in_block, :]
# assert target_torch.shape == source.shape
# assert torch.equal(target_torch, source)
BATCH = 16
BLOCK_SIZE = 32
SAME_LEN = True
WARM_UPS = 10
REPS = 100
configs = [
triton.testing.Benchmark(
x_names=["KV_SEQ_LEN"],
x_vals=[2**i for i in range(8, 13)],
line_arg="provider",
line_vals=["torch_copy_func", "triton_copy_func"],
line_names=["torch_copy_func", "triton_copy_func"],
styles=[("red", "-"), ("blue", "-")],
ylabel="ms",
plot_name=f"kvcache_copy_decoding_stage-batch-{BATCH}",
args={"bsz": BATCH, "block_size": 16, "max_seq_len": 8192, "num_kv_heads": 16, "same_context_len": True},
)
]
@triton.testing.perf_report(configs)
def benchmark_kvcache_copy(
provider: str,
bsz: int,
block_size: int,
max_seq_len: int,
KV_SEQ_LEN: int, # maximum past kv length (unequal context lens in batch) or past kv len (equal context lens)
num_kv_heads: int,
same_context_len: bool,
):
dtype = torch.float16
device = get_current_device()
assert KV_SEQ_LEN <= max_seq_len, "Assigned maximum kv length must be smaller or equal to maximum seq len"
new_k, new_v, k_cache, v_cache, context_lengths, block_tables = prepare_data(
bsz,
num_kv_heads,
HEAD_DIM,
block_size,
max_seq_len // block_size,
same_context_len,
KV_SEQ_LEN,
device=device,
dtype=dtype,
)
quantiles = [0.5, 0.2, 0.8]
# TODO copy_to_cache needs to support copying both k and v at the same time in the future.
if provider == "torch_copy_func":
fn = lambda: copy_to_cache(new_k, k_cache, lengths=context_lengths, block_tables=block_tables, type="decoding")
if provider == "triton_copy_func":
fn = lambda: copy_kv_to_blocked_cache(new_k, new_v, k_cache, v_cache, context_lengths, block_tables)
ms, min_ms, max_ms = triton.testing.do_bench(fn, warmup=WARM_UPS, rep=REPS, quantiles=quantiles)
return ms, min_ms, max_ms
if __name__ == "__main__":
test_copy_kv_to_caches(4, 32, 8, 16, True)
# benchmark_kvcache_copy.run(save_path=".", print_data=True)